当前位置: 首页 > news >正文

YOLOv10改进系列,YOLOv10损失函数更换为Powerful-IoU(2024年最新IOU),助力高效涨点


在这里插入图片描述

改进前训练结果:
在这里插入图片描述

改进后的结果:

在这里插入图片描述

摘要

边界框回归(BBR)是目标检测中的核心任务之一,BBR损失函数显著影响其性能。然而,观察到现有基于IoU的损失函数存在不合理的惩罚因子,导致回归过程中锚框扩展,并显著减缓收敛速度。为了解决这个问题,深入分析了锚框扩展的原因。针对这个问题,提出了一种新的Powerful-IoU(PIoU)损失函数,该函数结合了目标尺寸自适应惩罚因子和基于锚框质量的梯度调节函数。PIoU损失引导锚框沿着高效路径回归,收敛速度比现有基于IoU的损失函数更快。此外,还研究了聚焦机制,并引入了一种非单调注意力层,与PIoU结合形成了新的损失函数PIoU v2。PIoU v2损失增强了对中等质量锚框的聚焦能力。

Powerful-IoU介绍

物体定位是物体检测中的一项关键任务,它严重依赖于边界框回归 (BBR) 损失函数的评估和优化。因此,边界框回归损失函数显著影响物体检测器的性能。大多数 BBR 损失可归类为 𝑙𝑛-norm 和基于 IoU 的损失。如下图所示,不同IoU 损失函数引导的锚框回归过程。彩色框为不同损失函数引导的锚框在回归过程中的分布。很明显,PIoU 损失引导的锚框回归最快,可以最快地逼近目标框。而且,除 PIoU 损失外,所有损失函数引导的锚框都存在面积扩大的问题,而 PIoU 损失引导的锚框不存在此问题。
在这里插入图片描述
现有的基于IoU的损失函数在回归过程中首先增加锚框的尺寸以达到与目标框的重叠,即使锚框的面积已经大于目标框的面积。这种回归方式复杂且缓慢,需要更多轮次才能收敛。此外,它们的惩罚项包含不合理的成分,不能准确反映锚框和目标框之间的差异。它们没有充分考虑目标尺寸,在某些情况下可能会出现退化。为了解决锚框增大等问题,提出了一个具有尺寸自适应性的惩罚因子,引导锚框直接高效地回归。将这个惩罚因子与一个根据锚框质量调整梯度的函数相结合,得到一个新的基于 IoU 的损失,称为 Powerful-IoU (PIoU) 损失。PIoU 损失直接最小化锚框的四个边缘与目标框相应边缘之间的距离。因此在YOLOv10中将原始的损失替换为Powerful-IoU,实现更快

http://www.lryc.cn/news/439207.html

相关文章:

  • 工具知识 | Linux 常用命令参考手册
  • mysql 常用知识点总结
  • conda常用指令
  • 前后端分离项目--下载功能
  • PMP--一模--解题--81-90
  • 计算机网络 --- 【2】计算机网络的组成、功能
  • 『功能项目』切换职业技能面板【49】
  • 寻找排名好的自闭症学校?这些关键因素不可忽视
  • Git常用命令(记录)
  • STM32+ESP8266 WiFi连接机智云平台APP远程控制教程
  • 学懂C++(六十):C++ 11、C++ 14、C++ 17、C++ 20新特性大总结(万字详解大全)
  • 杭电1008电梯
  • 【Python小知识 - 2】:在VSCode中切换Python解释器版本
  • ubuntu meson安装
  • 记者协会评审系统-需求分析
  • python 检索与该查询最相似的句子 使用库hflayers和sentence_transformers来实现遇到的问题
  • 计算机毕业设计 在线新闻聚合平台的设计与实现 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试
  • 【机器学习随笔】概率论与实际问题的对应
  • C++初阶学习——探索STL奥秘——模拟实现list类
  • 生命之光不灭:帕金森综合征晚期,如何携手共度温暖岁月
  • Matlab simulink建模与仿真 第十五章(信号源库)
  • Java笔记 2 java概述和基础知识
  • 在使用ST-Link下载程序时出现“Error: Flash Download failed - Cortex-”
  • 长沙自闭症青少年学校:实现孩子的全面成长
  • 系统 IO
  • Mysql InnoDB 存储引擎简介
  • 驾校预约学习系统的设计与实现
  • Python--读取文件时出现的报错
  • 基于http请求的一种安全校验认证方案记录
  • 链动321模式开发系统解析源码