当前位置: 首页 > news >正文

卡特兰数的推理

卡特兰数(Catalan number),又称卡塔兰数、明安图数,是组合数学中一种常出现于各种计数问题中的数列。它以比利时数学家欧仁·查理·卡特兰的名字命名,但值得注意的是,这一数列的首次发现可以追溯到1730年,由清代蒙古族数学家明安图在对三角函数幂级数的推导过程中得出,并在1774年被发表在《割圜密率捷法》中。

定义与性质

卡特兰数的前几项为(从第0项开始):1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, …。它有多种数学表示方式,包括但不限于以下几种:

  • 通项公式 f ( n ) = C 2 n n n + 1 = C 2 n n − C 2 n n − 1 f(n) = \frac{C_{2n}^n}{n+1} = C_{2n}^n - C_{2n}^{n-1} f(n)=n+1C2nn=C2nnC2nn1,其中 C 2 n n C_{2n}^n C2nn表示从2n个不同元素中取出n个元素的组合数。
  • 递推公式 f ( n ) = 4 n − 2 n + 1 f ( n − 1 ) f(n) = \frac{4n-2}{n+1}f(n-1) f(n)=n+14n2f(n1),对于 n ≥ 1 n \geq 1 n1,且 f ( 0 ) = 1 f(0) = 1 f(0)=1
  • 递归公式 f ( n ) = f ( 0 ) ⋅ f ( n − 1 ) + f ( 1 ) ⋅ f ( n − 2 ) + … + f ( n − 1 ) ⋅ f ( 0 ) f(n) = f(0) \cdot f(n-1) + f(1) \cdot f(n-2) + \ldots + f(n-1) \cdot f(0) f(n)=f(0)f(n1)+f(1)f(n2)++f(n1)f(0),表示n个点的二叉树构成问题。

应用领域

卡特兰数在组合数学和计算机科学中有着广泛的应用,包括但不限于以下几个方面:

  1. 网格路径问题:在 n × n n \times n n×n的网格中,从点 ( 0 , 0 ) (0,0) (0,0)到点 ( n , n ) (n,n) (n,n),每次只能向右或向上移动一步,且在任何时候向右走的次数都不少于向上走的次数,这样的路径总数即为卡特兰数。
  2. 括号匹配问题:有n个左括号和n个右括号,能够组成的合法括号序列的数量是卡特兰数。
  3. 进出栈问题:给定一个栈,有n次进栈和n次出栈操作,所有可能的进出栈序列中,合法的序列数量是卡特兰数。
  4. 二叉树构成问题:有n个点,能够构成的不同二叉树的数量是卡特兰数。
  5. 凸多边形划分问题:凸n+2边形用其n-1条对角线分割为互不重叠的三角形的分法总数也是卡特兰数。

证明方法

由于卡特兰数的定义和性质涉及较深的组合数学知识,其证明方法通常较为复杂,且依赖于多种数学工具和技巧。这里以网格路径问题为例,简要说明其证明思路:

  • 首先,考虑所有从 ( 0 , 0 ) (0,0) (0,0) ( n , n ) (n,n) (n,n)的路径,总数为 C 2 n n C_{2n}^n C2nn,因为每一步都有向右或向上两种选择,且总共要走2n步。
  • 然后,考虑不合法的路径,即存在某个时刻向上走的次数多于向右走的次数的路径。这样的路径在碰到直线 y = x + 1 y=x+1 y=x+1后会继续向上走,直到到达某个点 ( k , k + 1 ) (k,k+1) (k,k+1)(其中 k < n k<n k<n)。
  • 接着,将这条不合法的路径沿直线 y = x + 1 y=x+1 y=x+1对称,其终点会变为 ( n − 1 , n + 1 ) (n-1,n+1) (n1,n+1)
  • 通过对称操作,我们可以发现,每一条不合法的路径都唯一对应着一条从 ( 0 , 0 ) (0,0) (0,0) ( n − 1 , n + 1 ) (n-1,n+1) (n1,n+1)的路径。
  • 因此,不合法的路径总数为 C 2 n n − 1 C_{2n}^{n-1} C2nn1
  • 最后,合法的路径总数即为所有路径总数减去不合法的路径总数,即 C 2 n n − C 2 n n − 1 C_{2n}^n - C_{2n}^{n-1} C2nnC2nn1,这与卡特兰数的通项公式一致。

需要注意的是,以上仅为网格路径问题的一个证明思路示例,卡特兰数的其他性质和应用领域的证明方法则可能有所不同。

http://www.lryc.cn/news/438021.html

相关文章:

  • 高精度治具加工的重要性和优势
  • 新版IDEA提示@Autowired不建议字段注入
  • adb的安装和使用 以及安装Frida 16.0.10+雷电模拟器
  • 解决移动端1px 边框优化的8个方法
  • 频带宽度固定,如何突破数据速率的瓶颈?
  • Linux网络编程 --- 高级IO
  • Python中给定一个数组a = [2,3,9,1,0],找出其中最大的一个数,并打印出来 求解?
  • 系统优化工具 | PC Cleaner v9.7.0.3 绿色版
  • JavaSE、JavaEE 与 JavaWeb 的详解与区别
  • HCIE和CCIE,哪个含金量更高点?
  • 2024.9.14 Python与图像处理新国大EE5731课程大作业,马尔可夫随机场和二值图割,校正立体图像的深度
  • 工业大模型市场图谱:53个工业大模型全面梳理
  • 【代码随想录训练营第42期 Day58打卡 - 图论Part8 - 拓扑排序
  • JVM内部结构解析
  • 誉龙视音频综合管理平台 RelMedia/FindById SQL注入漏洞复现
  • MATLAB系列01:MATLAB介绍
  • GEE 按范围导出 Sentinel-2 卫星影像
  • 队列OJ题——用队列实现栈
  • RK3588镜像打包制作,替换文件系统
  • Open-Sora代码详细解读(2):时空3D VAE
  • 基于微信平台的旅游出行必备商城小程序+ssm(lw+演示+源码+运行)
  • AI绘画:科技赋能艺术的崭新时代
  • 性能诊断的方法(四):自下而上的资源诊断方法和发散的异常信息诊断方法
  • GDPU Vue前端框架开发 计数器
  • 最大流笔记
  • el-tree父子不互相关联时,手动实现全选、反选、子级全选、清空功能
  • 模板与泛型编程笔记(一)入门篇
  • 浅谈WebApi
  • 9月14日,每日信息差
  • 无人机控制与三维AI感知处理平台正式上线!