当前位置: 首页 > news >正文

动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习

  • 动手学习RAG: 向量模型
  • 动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习
  • 动手学习RAG:迟交互模型colbert微调实践 bge-m3

1. 环境准备

pip install transformers
pip install open-retrievals
  • 注意安装时是pip install open-retrievals,但调用时只需要import retrievals
  • 欢迎关注最新的更新 https://github.com/LongxingTan/open-retrievals

2. 使用M3E模型

from retrievals import AutoModelForEmbeddingembedder = AutoModelForEmbedding.from_pretrained('moka-ai/m3e-base', pooling_method='mean')
embedder

请添加图片描述

sentences = ['* Moka 此文本嵌入模型由 MokaAI 训练并开源,训练脚本使用 uniem','* Massive 此文本嵌入模型通过**千万级**的中文句对数据集进行训练','* Mixed 此文本嵌入模型支持中英双语的同质文本相似度计算,异质文本检索等功能,未来还会支持代码检索,ALL in one'
]embeddings = embedder.encode(sentences)for sentence, embedding in zip(sentences, embeddings):print("Sentence:", sentence)print("Embedding:", embedding)print("")

请添加图片描述

3. deepspeed 微调m3e模型

数据仍然采用之前介绍的t2-ranking数据集

  • deepspeed配置保存为 ds_zero2_no_offload.json. 不过虽然设置了zero2,这里我只用了一张卡. 但deepspeed也很容易扩展到多卡,或多机多卡
    • 关于deepspeed的分布式设置,可参考Tranformer分布式特辑
{"fp16": {"enabled": "auto","loss_scale": 0,"loss_scale_window": 100,"initial_scale_power": 16,"hysteresis": 2,"min_loss_scale": 1e-10},"zero_optimization": {"stage": 2,"allgather_partitions": true,"allgather_bucket_size": 1e8,"overlap_comm": true,"reduce_scatter": true,"reduce_bucket_size": 1e8,"contiguous_gradients": true},"gradient_accumulation_steps": "auto","gradient_clipping": "auto","steps_per_print": 2000,"train_batch_size": "auto","train_micro_batch_size_per_gpu": "auto","wall_clock_breakdown": false
}

这里稍微修改了open-retrievals这里的代码,主要是修改了导入为包的导入,而不是相对引用。保存文件为embed.py

"""Embedding fine tune pipeline"""import logging
import os
import pickle
from dataclasses import dataclass, field
from pathlib import Path
from typing import List, Optionalimport torch
from torch.utils.data import DataLoader
from transformers import AutoTokenizer, HfArgumentParser, TrainingArguments, set_seedfrom retrievals import (EncodeCollator,EncodeDataset,PairCollator,RetrievalTrainDataset,TripletCollator,
)
from retrievals.losses import AutoLoss, InfoNCE, SimCSE, TripletLoss
from retrievals.models.embedding_auto import AutoModelForEmbedding
from retrievals.trainer import RetrievalTrainer# os.environ["WANDB_LOG_MODEL"] = "false"
logger = logging.getLogger(__name__)@dataclass
class ModelArguments:model_name_or_path: str = field(metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"})config_name: Optional[str] = field(default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"})tokenizer_name: Optional[str] = field(default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})cache_dir: Optional[str] = field(default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"})causal_lm: bool = field(default=False, metadata={'help': "Whether the model is a causal lm or not"})lora_path: Optional[str] = field(default=None, metadata={'help': "Lora adapter save path"})@dataclass
class DataArguments:data_name_or_path: str = field(default=None, metadata={"help": "Path to train data"})train_group_size: int = field(default=2)unfold_each_positive: bool = field(default=False)query_max_length: int = field(default=32,metadata={"help": "The maximum total input sequence length after tokenization for passage. Sequences longer ""than this will be truncated, sequences shorter will be padded."},)document_max_length: int = field(default=128,metadata={"help": "The maximum total input sequence length after tokenization for passage. Sequences longer ""than this will be truncated, sequences shorter will be padded."},)query_instruction: str = field(default=None, metadata={"help": "instruction for query"})document_instruction: str = field(default=None, metadata={"help": "instruction for document"})query_key: str = field(default=None)positive_key: str = field(default='positive')negative_key: str = field(default='negative')is_query: bool = field(default=False)encoding_save_file: str = field(default='embed.pkl')def __post_init__(self):# self.data_name_or_path = 'json'self.dataset_split = 'train'self.dataset_language = 'default'if self.data_name_or_path is not None:if not os.path.isfile(self.data_name_or_path) and not os.path.isdir(self.data_name_or_path):info = self.data_name_or_path.split('/')self.dataset_split = info[-1] if len(info) == 3 else 'train'self.data_name_or_path = "/".join(info[:-1]) if len(info) == 3 else '/'.join(info)self.dataset_language = 'default'if ':' in self.data_name_or_path:self.data_name_or_path, self.dataset_language = self.data_name_or_path.split(':')@dataclass
class RetrieverTrainingArguments(TrainingArguments):train_type: str = field(default='pairwise', metadata={'help': "train type of point, pair, or list"})negatives_cross_device: bool = field(default=False, metadata={"help": "share negatives across devices"})temperature: Optional[float] = field(default=0.02)fix_position_embedding: bool = field(default=False, metadata={"help": "Freeze the parameters of position embeddings"})pooling_method: str = field(default='cls', metadata={"help": "the pooling method, should be cls or mean"})normalized: bool = field(default=True)loss_fn: str = field(default='infonce')use_inbatch_negative: bool = field(default=True, metadata={"help": "use documents in the same batch as negatives"})remove_unused_columns: bool = field(default=False)use_lora: bool = field(default=False)use_bnb_config: bool = field(default=False)do_encode: bool = field(default=False, metadata={"help": "run the encoding loop"})report_to: Optional[List[str]] = field(default="none", metadata={"help": "The list of integrations to report the results and logs to."})def main():parser = HfArgumentParser((ModelArguments, DataArguments, RetrieverTrainingArguments))model_args, data_args, training_args = parser.parse_args_into_dataclasses()model_args: ModelArgumentsdata_args: DataArgumentstraining_args: TrainingArgumentsif (os.path.exists(training_args.output_dir)and os.listdir(training_args.output_dir)and training_args.do_trainand not training_args.overwrite_output_dir):raise ValueError(f"Output directory ({training_args.output_dir}) already exists and is not empty. ""Use --overwrite_output_dir to overcome.")logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",datefmt="%m/%d/%Y %H:%M:%S",level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN,)logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",training_args.local_rank,training_args.device,training_args.n_gpu,bool(training_args.local_rank != -1),training_args.fp16,)logger.info("Training/evaluation parameters %s", training_args)logger.info("Model parameters %s", model_args)logger.info("Data parameters %s", data_args)set_seed(training_args.seed)tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,cache_dir=model_args.cache_dir,use_fast=False,)if training_args.use_bnb_config:from transformers import BitsAndBytesConfiglogger.info('Use quantization bnb config')quantization_config = BitsAndBytesConfig(load_in_4bit=True,bnb_4bit_use_double_quant=True,bnb_4bit_quant_type="nf4",bnb_4bit_compute_dtype=torch.bfloat16,)else:quantization_config = Noneif training_args.do_train:model = AutoModelForEmbedding.from_pretrained(model_name_or_path=model_args.model_name_or_path,pooling_method=training_args.pooling_method,use_lora=training_args.use_lora,quantization_config=quantization_config,)loss_fn = AutoLoss(loss_name=training_args.loss_fn,loss_kwargs={'use_inbatch_negative': training_args.use_inbatch_negative,'temperature': training_args.temperature,},)model = model.set_train_type("pairwise",loss_fn=loss_fn,)train_dataset = RetrievalTrainDataset(args=data_args,tokenizer=tokenizer,positive_key=data_args.positive_key,negative_key=data_args.negative_key,)logger.info(f"Total training examples: {len(train_dataset)}")trainer = RetrievalTrainer(model=model,args=training_args,train_dataset=train_dataset,data_collator=TripletCollator(tokenizer,query_max_length=data_args.query_max_length,document_max_length=data_args.document_max_length,positive_key=data_args.positive_key,negative_key=data_args.negative_key,),)Path(training_args.output_dir).mkdir(parents=True, exist_ok=True)trainer.train()# trainer.save_model(training_args.output_dir)model.save_pretrained(training_args.output_dir)if trainer.is_world_process_zero():tokenizer.save_pretrained(training_args.output_dir)if training_args.do_encode:model = AutoModelForEmbedding.from_pretrained(model_name_or_path=model_args.model_name_or_path,pooling_method=training_args.pooling_method,use_lora=training_args.use_lora,quantization_config=quantization_config,lora_path=model_args.lora_path,)max_length = data_args.query_max_length if data_args.is_query else data_args.document_max_lengthlogger.info(f'Encoding will be saved in {training_args.output_dir}')encode_dataset = EncodeDataset(args=data_args, tokenizer=tokenizer, max_length=max_length, text_key='text')logger.info(f"Number of train samples: {len(encode_dataset)}, max_length: {max_length}")encode_loader = DataLoader(encode_dataset,batch_size=training_args.per_device_eval_batch_size,collate_fn=EncodeCollator(tokenizer, max_length=max_length, padding='max_length'),shuffle=False,drop_last=False,num_workers=training_args.dataloader_num_workers,)embeddings = model.encode(encode_loader, show_progress_bar=True, convert_to_numpy=True)lookup_indices = list(range(len(encode_dataset)))with open(os.path.join(training_args.output_dir, data_args.encoding_save_file), 'wb') as f:pickle.dump((embeddings, lookup_indices), f)if __name__ == "__main__":main()
  • 最终调用文件 shell run.sh
MODEL_NAME="moka-ai/m3e-base"TRAIN_DATA="/root/kag101/src/open-retrievals/t2/t2_ranking.jsonl"
OUTPUT_DIR="/root/kag101/src/open-retrievals/t2/ft_out"# loss_fn: infonce, simcsedeepspeed -m --include localhost:0 embed.py \--deepspeed ds_zero2_no_offload.json \--output_dir $OUTPUT_DIR \--overwrite_output_dir \--model_name_or_path $MODEL_NAME \--do_train \--data_name_or_path $TRAIN_DATA \--positive_key positive \--negative_key negative \--pooling_method mean \--loss_fn infonce \--use_lora False \--query_instruction "" \--document_instruction "" \--learning_rate 3e-5 \--fp16 \--num_train_epochs 5 \--per_device_train_batch_size 32 \--dataloader_drop_last True \--query_max_length 64 \--document_max_length 256 \--train_group_size 4 \--logging_steps 100 \--temperature 0.02 \--save_total_limit 1 \--use_inbatch_negative false

请添加图片描述

4. 测试

微调前性能 c-mteb t2-ranking score

请添加图片描述

微调后性能

请添加图片描述

采用infoNCE损失函数,没有加in-batch negative,而关注的是困难负样本,经过微调map从0.654提升至0.692,mrr从0.754提升至0.805

对比一下非deepspeed而是直接torchrun的微调

  • map略低,mrr略高。猜测是因为deepspeed中设置的一些auto会和直接跑并不完全一样
    请添加图片描述
http://www.lryc.cn/news/437771.html

相关文章:

  • Nacos rce-0day漏洞复现(nacos 2.3.2)
  • yjs04——matplotlib的使用(多个坐标图)
  • MOS管和三极管有什么区别?
  • 医院多参数空气质量监控和压差监测系统简介@卓振思众
  • [项目实战]EOS多节点部署
  • setImmediate() vs setTimeout() 在 JavaScript 中的区别
  • 【Java文件操作】文件系统操作文件内容操作
  • 关于若依flowable的安装
  • 猜数字困难版(1-10000)
  • ASPICE术语表
  • Knife4j:打造优雅的SpringBoot API文档
  • 数学建模笔记—— 多目标规划
  • 【鸿蒙HarmonyOS NEXT】页面之间相互传递参数
  • SonicWall SSL VPN曝出高危漏洞,可能导致防火墙崩溃
  • 关于SAP标准委外(带料外协)采购订单信息
  • SpringBoot整合WebSocket实现消息推送或聊天功能示例
  • 使用 QEMU 模拟器运行 FreeRTOS 实时操作系统
  • Oracle EBS中AR模块的财务流程概览
  • Minitab 的直方图结果分析解释
  • AgentRE:用智能体框架提升知识图谱构建效果,重点是开源!
  • 力扣题解2390
  • 用Python获取PDF页面的大小、方向和旋转角度
  • 【即时通讯】轮询方式实现
  • Flock 明牌空投教程
  • 项目内部调用的远程接口开发
  • 影响IP代理池稳定性的因素有哪些?
  • 基于Prometheus和Grafana的现代服务器监控体系构建
  • 原生 input 中的 “type=file“ 上传文件
  • 【Unity新闻】Unity的产品命名变化
  • 《PostMan(一):配置全局令牌》