当前位置: 首页 > news >正文

matlab处理函数3

1. 直方图均衡化的 Matlab 实现

1.1 imhist 函数

功能:计算和显示数字数字图像的色彩直方图
格式:imhist(I,n)
        imhist(X,map)
说明:imhist(I,n) 其中,n 为指定的灰度级数目,缺省值为256;imhist(X,map) 就算和显示索引色数字数字图像 X 的直方图,map为调色板。用stem(x,counts) 同样可以显示直方图。

1.2 imcontour 函数

功能:显示数字数字图像的等灰度值图
格式:imcontour(I,n),imcontour(I,v)
说明:n 为灰度级的个数,v 是有用户指定所选的等灰度级向量。

1.3 imadjust 函数

功能:通过直方图变换调整对比度
格式:J=imadjust(I,[low high],[bottomtop],gamma)
        newmap=imadjust(map,[low high],[bottomtop],gamma)
说明:J=imadjust(I,[low high],[bottomtop],gamma) 其中,gamma 为校正量r,[lowhigh] 为原数字数字图像中要变换的灰度范围,[bottom top]
指定了变换后的灰度范围;newmap=imadjust(map,[lowhigh],[bottom top],gamma) 调整索引色数字数字图像的调色板 map 。此时若 [low high] 和
[bottom top] 都为2×3的矩阵,则分别调整 R、G、B 3个分量。

1.4 histeq 函数

功能:直方图均衡化
格式:J=histeq(I,hgram)
        J=histeq(I,n)
        [J,T]=histeq(I,...)
        newmap=histeq(X,map,hgram)
        newmap=histeq(X,map)
        [new,T]=histeq(X,...)
说明:J=histeq(I,hgram) 实现了所谓“直方图规定化”,即将原是图象 I 的直方图变换成用户指定的向量 hgram 。hgram 中的每一个元素
都在 [0,1] 中;J=histeq(I,n) 指定均衡化后的灰度级数 n ,缺省值为 64;[J,T]=histeq(I,...)返回从能将数字数字图像 I 的灰度直方图变换成
数字数字图像 J 的直方图的变换 T ;newmap=histeq(X,map) 和 [new,T]=histeq(X,...) 是针对索引色数字数字图像调色板的直方图均衡。
 

2. 噪声及其噪声的 Matlab 实现

        imnoise 函数
格式:J=imnoise(I,type)
        J=imnoise(I,type,parameter)
说明:J=imnoise(I,type) 返回对数字数字图像 I 添加典型噪声后的有噪数字数字图像 J ,参数type 和 parameter 用于确定噪声的类型和相应的参数。

3. 数字数字图像滤波的 Matlab 实现

3.1 conv2 函数

功能:计算二维卷积
格式:C=conv2(A,B)
        C=conv2(Hcol,Hrow,A)
        C=conv2(...,'shape')
说明:对于 C=conv2(A,B) ,conv2 的算矩阵A 和 B 的卷积,若[Ma,Na]=size(A), [Mb,Nb]=size(B), 则 size(C)=[Ma+Mb-1,Na+Nb-1];
C=conv2(Hcol,Hrow,A) 中,矩阵 A 分别与Hcol 向量在列方向和 Hrow 向量在行方向上进行卷积;C=conv2(...,'shape') 用来指定 conv2
返回二维卷积结果部分,参数 shape 可取值如下:
        》full为缺省值,返回二维卷积的全部结果;
        》same返回二维卷积结果中与 A 大小相同的中间部分;
        valid 返回在卷积过程中,未使用边缘补 0 部分进行计算的卷积结果部分,当 size(A)>size(B) 时,size(C)=[Ma-Mb+1,Na-Nb+1]。
 

3.2 conv 函数

功能:计算多维卷积
格式:与 conv2 函数相同

3.3 filter2函数

功能:计算二维线型数字滤波,它与函数 fspecial 连用
格式:Y=filter2(B,X)
        Y=filter2(B,X,'shape')
说明:对于 Y=filter2(B,X) ,filter2 使用矩阵B 中的二维 FIR 滤波器对数据 X 进行滤波,结果 Y 是通过二维互相关计算出来的,其大
小与 X 一样;对于Y=filter2(B,X,'shape') ,filter2返回的 Y 是通过二维互相关计算出来的,其大小由参数 shape 确定,其取值如下

        》full返回二维相关的全部结果,size(Y)>size(X);
        》same返回二维互相关结果的中间部分,Y 与X 大小相同;
        》valid返回在二维互相关过程中,未使用边缘补 0 部分进行计算的结果部分,有 size(Y)<size(X) 。

3.4 fspecial 函数

功能:产生预定义滤波器
格式:H=fspecial(type)
        H=fspecial('gaussian',n,sigma)        高斯低通滤波器
        H=fspecial('sobel')                        Sobel 水平边缘增强滤波器
        H=fspecial('prewitt')                     Prewitt 水平边缘增强滤波器
        H=fspecial('laplacian',alpha)            近似二维拉普拉斯运算滤波器
        H=fspecial('log',n,sigma)                高斯拉普拉斯(LoG)运算滤波器
        H=fspecial('average',n)                  均值滤波器
        H=fspecial('unsharp',alpha)            模糊对比增强滤波器
说明:对于形式 H=fspecial(type) ,fspecial 函数产生一个由 type 指定的二维滤波器 H ,返回的H 常与其它滤波器搭配使用。
 

4. 彩色增强的 Matlab 实现

4.1 imfilter函数

功能:真彩色增强
格式:B=imfilter(A,h)
说明:将原始数字数字图像 A 按指定的滤波器 h 进行滤波增强处理,增强后的数字数字图像 B 与A 的尺寸和类型相同

http://www.lryc.cn/news/437621.html

相关文章:

  • 跨系统环境下LabVIEW程序稳定运行
  • 开源项目低代码表单FormCreate中通过接口加载远程数据选项
  • k8s的搭建
  • 人工智能与机器学习原理精解【19】
  • DingoDB:多模态向量数据库的实践与应用
  • 03.01、三合一
  • github上clone代码过程
  • ChatGLM3模型搭建教程
  • 多层建筑能源参数化模型和城市冠层模型的区别
  • 27. Redis并发问题
  • JVM四种垃圾回收算法以及G1垃圾回收器(面试)
  • Python 数学建模——Vikor 多标准决策方法
  • 计算机网络八股总结
  • AMD CMD UMD CommonJs ESM 的历史和区别
  • 人工智能数据基础之微积分入门-学习篇
  • 【PSINS】ZUPT代码解析(PSINS_SINS_ZUPT)|MATLAB
  • 多态(上)【C++】
  • 如何驱动一枚30年前的音源芯片,YMF288驱动手记 Part2
  • yarn webpack脚手架 react+ts搭建项目
  • 防蓝光护眼灯有用吗?五款防蓝光效果好的护眼台灯推荐
  • Mac使用Elasticsearch
  • DevOps -CI/CD 与自动化部署
  • 单体架构系统是不是已经彻底死亡?
  • mathorcup发邮件:参赛必看邮件撰写技巧?
  • ESP01烧入AT出厂固件
  • Qt 开发:深入详解 Qt 的信号与槽机制——彻底搞懂QT信号与槽
  • 民间故事推广系统小程序的设计
  • 关于武汉芯景科技有限公司的IIC缓冲器芯片XJ4307开发指南(兼容LTC4307)
  • C++ 异常
  • ST官方 VSCode 插件安装及配置工程参考