当前位置: 首页 > news >正文

鸿蒙OpenHarmony【轻量系统芯片移植】内核移植

移植芯片架构

芯片架构的移植是内核移植的基础,在OpenHarmony中芯片架构移植是可选过程,如果当前OpenHarmony已经支持对应芯片架构则不需要移植操作,在“liteos_m/arch”目录下可看到当前已经支持的架构,如表1:

表1 OpenHarmony已支持的架构

系列型号
armarm9 cortex-m3 cortex-m4 cortex-m7 cortex-m33
cskyv2
risc-vnuclei riscv32
xtensalx6

如果当前OpenHarmony尚未支持对应芯片架构,则需要芯片厂商自行适配,arch/include目录包含了通用的芯片架构适配所需要实现的函数。部分芯片架构代码由汇编实现,而汇编代码会因编译器的不同而不同,因此在具体的芯片架构下,还包含使用不同编译器(iar、keil、gcc等)编译的架构代码。

kernel/liteos_m/arch          # 不同版本路径有差异
├── arm                       # arm系列
│   ├── arm9
│   ├── cortex-m3
│   ├── cortex-m33
│   │   ├── gcc               # 使用gcc编译器编译的架构代码
│   │   └── iar               # 使用iar编译器编译的架构代码
│   ├── cortex-m4
│   ├── cortex-m7
├── csky                      # csky系列
├── include                   # 包含通用的芯片架构所需要实现的函数
│   ├── los_arch.h            # 定义芯片架构初始化所需要的函数
│   ├── los_atomic.h          # 定义芯片架构所需要实现的原子操作函数
│   ├── los_context.h         # 定义芯片架构所需要实现的任务上下文相关函数
│   ├── los_interrupt.h       # 定义芯片架构所需要实现的中断和异常相关的函数
│   └── los_timer.h           # 定义芯片架构所需要实现的系统时钟相关的函数
├── risc-v                    # risc-v系列
│   ├── nuclei
│   └── riscv32
└── xtensa                    # xtensa系列└── lx6

移植芯片厂商SDK

编译框架搭建完成后,需要将芯片厂商的SDK加入OpenHarmony编译框架,从而可以编译出带SDK的烧录文件(此时编译出的是不带系统的裸机工程),以便OpenHarmony可以调用SDK中的接口。通过以下步骤将厂商SDK加入OpenHarmony编译框架中:

  1. 将芯片厂商sdk置于device目录下合适的位置,SDK的编译脚本/镜像打包脚本整合进编译框架中。 参考编译脚本:“device/MyDeviceCompany/MyBoard/BUILD.gn”

    import("//build/lite/config/component/lite_component.gni")executable("OHOS_Image.elf") {    # 生成可执行程序libs = ["xxx/xxx/libxxx.a",           # 链接厂商闭源静态库方法一]asmflags = [                    # 汇编编译参数"",]ldflags = ["-T./xxx/xxx/xxx.ld",         # 链接脚本文件"-Lxxx/xxx/",                 # 指定厂商静态库路径"-lxxx",                      # 链接厂商闭源静态库方法二"-Wl,--whole-archive","-lmodule_xxx","-Wl,--no-whole-archive",]deps = ["//build/lite:ohos",          # 依赖OpenHarmony静态库编译完成,链接OpenHarmony编译出来的静态库":sdk",                       # 依赖厂商源码静态库编译完成,链接厂商源码生成的静态库]
    }copy("prebuilt") {                # 准备镜像生成工具等,一般把镜像生成工具拷贝到out目录sources = [ ]                   # 复制的源文件outputs = [ ]                   # 复制的目标文件
    }
    static_library("sdk") {sources = [ ]                   # 添加厂商源码编译成静态库include_dirs = [ ]              # 厂商源码包含头文件路径
    }
    build_ext_component("image") {    # 调用shell命令,生成可烧写镜像文件                             exec_path = rebase_path(root_out_dir)   #指定shell命令执行目录objcopy = "arm-none-eabi-objcopy"objdump = "arm-none-eabi-objdump"command = "$objcopy -O binary OHOS_Image.elf OHOS_Image.bin" command += " && sh -c '$objdump -t OHOS_Image.elf | sort > OHOS_Image.sym.sorted'" command += " && sh -c '$objdump -d OHOS_Image.elf > OHOS_Image.asm'"                  deps = [":prebuilt",                  # 无需准备镜像生成工具等可以删除此依赖":OHOS_Image.elf",            # 依赖elf文件的生成]
    }
    group("MyBoard") {                # MyBoard与当前路径名称一致
    }
    

    图1 目标的依赖执行顺序 1

  2. 自定义芯片厂“target_config.h”文件。 厂商应在“device/MyDeviceCompany/MyBoard”下合适位置创建内核配置文件“target_config.h”,并根据芯片的硬件资源修改参数(具体参数介绍详见表2target_config.h文件主要配置项)。

    参考文件路径:“device/hisilicon/hispark_pegasus/sdk_liteos/platform/os/Huawei_LiteOS/targets/hi3861v100/include/target_config.h”

    说明:

    1. 若已有的配置项不能满足需求,可查看“kernel/liteos_m/kernel/include/los_config.h”,其为liteos_m内核的全量配置文件。
    2. “target_config.h”文件中出现的配置将会覆盖“los_config.h”中的配置。

    表2 target_config.h文件主要配置项

    配置项说明参考值
    OS_SYS_CLOCK系统时钟。40000000UL
    LOSCFG_BASE_CORE_TICK_PER_SECOND操作系统节拍的时钟周期。100UL
    LOSCFG_BASE_CORE_TICK_HW_TIME定时器裁剪的外部配置项。YES
    LOSCFG_PLATFORM_HWI是否采用接管中断的方式。YES
    LOSCFG_BASE_CORE_TSK_LIMIT支持的最大任务个数(除去空闲任务)。32
    LOSCFG_BASE_CORE_TSK_IDLE_STACK_SIZE空闲任务的堆栈大小。0x180UL
    LOSCFG_BASE_CORE_TSK_DEFAULT_STACK_SIZE指定默认的任务栈大小,任务栈的大小按 8 字节大小对齐。0x1000UL
    LOSCFG_BASE_CORE_TSK_MIN_STACK_SIZE表示任务最小需要的堆栈大小。ALIGN(0x180, 4)
    LOSCFG_BASE_CORE_TIMESLICE_TIMEOUT具有相同优先级任务的最长执行时间。2
    LOSCFG_BASE_IPC_SEM_LIMIT最大支持信号量的个数。100
    LOSCFG_BASE_IPC_MUX_LIMIT最大支持互斥量的个数。64
    LOSCFG_BASE_IPC_QUEUE_LIMIT最大支持消息队列量的个数。64
    LOSCFG_BASE_CORE_SWTMR_LIMIT支持的最大软件定时器数量,而不是可用的软件定时器数量。80
    LOSCFG_BASE_MEM_NODE_SIZE_CHECK配置内存节点大小检查。NO
    LOSCFG_PLATFORM_EXC异常模块配置项。YES
    LOSCFG_USE_SYSTEM_DEFINED_INTERRUPT是否使用OS默认的中断。NO
  3. 修改内核中断。 内核提供了两种中断修改方式:

    1. 使用厂商默认中断。

    将“target_config.h”中的宏"LOSCFG_USE_SYSTEM_DEFINED_INTERRUPT"置为NO (0),但需要在xxx.s启动文件中作以下修改:

    • PendSV_Handler:厂商sdk自带中断入口函数,需要替换为OpenHarmony的接口HalPendSV;
    • SysTick_Handler:厂商sdk自带时钟中断入口函数,需要替换为OpenHarmony的接口OsTickHandler。
    1. 系统初始化时重定向中断。

    将“target_config.h”中的宏"LOSCFG_USE_SYSTEM_DEFINED_INTERRUPT"和"LOSCFG_PLATFORM_HWI"置为YES (1)。

    说明: 重定向后的中断向量表g_hwiForm需要根据arch手册要求进行字节对齐,通常0x200字节对齐。

添加内核子系统

添加完内核子系统后,可以编译出带有系统的工程。通过以下步骤添加内核子系统:

  1. 在“config.json”中添加内核子系统。 路径:“vendor/MyVendorCompany/MyProduct/config.json”

    修改如下:

    {"subsystem": "kernel",          # 添加内核子系统"components": [{ "component": "liteos_m", "features":[""] }]
    },
    
  2. 开启/关闭内核特性。 轻量级系统的内核提供了一些特性,此步骤将指导如何查看、开启/关闭这些特性。

    内核特性:liteos_m提供了包括文件系统、backtrace在内的一系列内核特性开关。

    路径:“kernel/liteos_m/BUILD.gn”

    declare_args() {enable_ohos_kernel_liteos_m_cppsupport = true        # cpp支持enable_ohos_kernel_liteos_m_cpup = true              # CPU占用率支持enable_ohos_kernel_liteos_m_exchook = true           # 异常处理支持enable_ohos_kernel_liteos_m_kal = true               # kal接口支持enable_ohos_kernel_liteos_m_fs = true                # 文件系统支持enable_ohos_kernel_liteos_m_backtrace = true         # backtrace支持
    }
    group("kernel") {
    deps = ["components/bounds_checking_function:sec","kernel:kernel","utils:utils",]if (enable_ohos_kernel_liteos_m_cppsupport == true) {deps += [ "components/cppsupport:cppsupport" ]     # 如果内核特性true,则会加入相应的代码进行编译}……if (enable_ohos_kernel_liteos_m_kal == true) {deps += [ "kal:kal" ]}
    }
    

    特性:可以选择cmsis接口或者posix接口支持。

    路径:“kernel/liteos_m/kal/BUILD.gn”

    declare_args() {enable_ohos_kernel_liteos_m_cmsis = true  # cmsis支持enable_ohos_kernel_liteos_m_posix = true  # posix支持
    }
    static_library("kal") {sources = [ "kal.c" ]if (enable_ohos_kernel_liteos_m_cmsis == true) {deps += [ "cmsis/" ]                    # 如果cmsis enable,加入cmsis目录编译}if (enable_ohos_kernel_liteos_m_posix == true) {deps += [ "posix/" ]                    # 如果posix enable,加入posix目录编译}
    }
    

    特性:可以选择fatfs支持。

    路径:“kernel/liteos_m/components/fs/BUILD.gn”

    declare_args() {enable_ohos_kernel_liteos_m_fatfs = true   # fatfs支持
    }
    group("fs") {deps = []if (enable_ohos_kernel_liteos_m_fatfs == true) {deps += [ "fatfs:fatfs" ] }
    }
    

    说明: 内核特性开关可以在具体产品模组中配置。例如关闭fs和cppsupport特性
    “vendor/MyVendorCompany/MyProduct/config.json”

    "subsystem": "kernel",
    "components": [{ "component": "liteos_m", "features":["enable_ohos_kernel_liteos_m_fs = false","enable_ohos_kernel_liteos_m_cppsupport = false"] }
    ]
    }
    

以上就是本篇文章所带来的鸿蒙开发中一小部分技术讲解;想要学习完整的鸿蒙全栈技术。可以在结尾找我可全部拿到!
下面是鸿蒙的完整学习路线,展示如下:
1

除此之外,根据这个学习鸿蒙全栈学习路线,也附带一整套完整的学习【文档+视频】,内容包含如下

内容包含了:(ArkTS、ArkUI、Stage模型、多端部署、分布式应用开发、音频、视频、WebGL、OpenHarmony多媒体技术、Napi组件、OpenHarmony内核、鸿蒙南向开发、鸿蒙项目实战)等技术知识点。帮助大家在学习鸿蒙路上快速成长!

鸿蒙【北向应用开发+南向系统层开发】文档

鸿蒙【基础+实战项目】视频

鸿蒙面经

2

为了避免大家在学习过程中产生更多的时间成本,对比我把以上内容全部放在了↓↓↓想要的可以自拿喔!谢谢大家观看!
3

http://www.lryc.cn/news/436628.html

相关文章:

  • 多字节字符和宽字符
  • C++缺省参数
  • 深度学习中的常用线性代数知识汇总——第一篇:基础概念、秩、奇异值
  • MATLAB | R2024b更新了哪些好玩的东西?
  • 嵌入式硬件基础知识
  • keepalived和lvs高可用集群
  • 在VMware部署银河麒麟系统
  • git删除本地分支报错:error: the branch ‘xxx‘ is not fully merged
  • Tensorflow 兼容性测试-opencloudos
  • Windows主机上安装CUPS服务端共享USB打印机实践心得
  • socket通讯原理及例程(详解)
  • vue3使用provide和inject传递异步请求数据子组件接收不到
  • 对称矩阵的压缩存储
  • 高阶数据结构之哈希表基础讲解与模拟实现
  • 基于STM32设计的智能货架(华为云IOT)(225)
  • JDBC API详解一
  • 工厂安灯系统在设备管理中的重要性
  • 【LabVIEW学习篇 - 23】:简单状态机
  • 【CSS】 Grid布局:现代网页设计的基石
  • jQuery UI API 文档
  • 盘点2024年大家都在用的录屏工具
  • 【大数据】探索怎么从一段话中解析关键信息(寄件人相关信息)
  • 初学者指南:MyBatis 入门教程
  • reader-lm:小模型 html转markdown
  • 进击J6:ResNeXt-50实战
  • 新代机床采集数据
  • 景联文科技:专业数据标注公司,推动AI技术革新
  • k8s以及prometheus
  • android 权限说明
  • <winsock>重叠IO模型