当前位置: 首页 > news >正文

利用深度学习实现验证码识别-4-ResNet18+imagecaptcha

在当今的数字化世界中,验证码(CAPTCHA)是保护网站免受自动化攻击的重要工具。然而,对于用户来说,验证码有时可能会成为一种烦恼。为了解决这个问题,我们可以利用深度学习技术来自动识别验证码,从而提高用户体验。本文将介绍如何使用ResNet18模型来识别ImageCaptcha生成的验证码。
在这里插入图片描述

1. 环境设置与数据准备

首先,我们需要检查CUDA是否可用,以便利用GPU加速训练过程。

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f'Using device: {device}')

接下来,我们定义一个数据生成器CaptchaDataset,它使用imagecaptcha库生成验证码图像。

class CaptchaDataset(Dataset):def __init__(self, length=1000, charset=None, captcha_length=5, transform=None):self.length = lengthself.transform = transformself.charset = charset if charset is not None else string.ascii_letters + string.digitsself.captcha_length = captcha_lengthself.num_classes = len(self.charset)self.image_generator = ImageCaptcha(width=160, height=60)def __len__(self):return self.lengthdef __getitem__(self, idx):text = ''.join(random.choices(self.charset, k=self.captcha_length))image = self.image_generator.generate_image(text)if self.transform:image = self.transform(image)label = [self.charset.index(c) for c in text]return image, torch.tensor(label, dtype=torch.long)
2. 数据增强与预处理

为了提高模型的泛化能力,我们使用了一系列的数据增强和预处理步骤。

transform = transforms.Compose([transforms.Grayscale(),  # 将图像转换为灰度transforms.Resize((40, 100)),transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))
])
3. 数据集划分与加载

我们将数据集划分为训练集和验证集,并使用DataLoader进行批量加载。

dataset = CaptchaDataset(length=2000, charset=charset, captcha_length=captcha_length, transform=transform)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False)
4. 模型定义与迁移学习

我们使用预训练的ResNet18模型,并对其进行微调以适应验证码识别任务。

class CaptchaModel(nn.Module):def __init__(self, num_classes, captcha_length):super(CaptchaModel, self).__init__()self.captcha_length = captcha_lengthself.resnet = models.resnet18(weights=models.ResNet18_Weights.DEFAULT)self.resnet.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)num_ftrs = self.resnet.fc.in_featuresself.resnet.fc = nn.Linear(num_ftrs, num_classes * self.captcha_length)def forward(self, x):x = self.resnet(x)return x.view(-1, self.captcha_length, num_classes)
5. 训练与评估

我们定义了训练函数train_model,并在每个epoch结束时保存模型检查点。

def train_model(epochs, resume=False):start_epoch = 0if resume and os.path.isfile("captcha_model_checkpoint.pth.tar"):checkpoint = load_checkpoint()model.load_state_dict(checkpoint['state_dict'])optimizer.load_state_dict(checkpoint['optimizer'])start_epoch = checkpoint['epoch']scaler = torch.cuda.amp.GradScaler()for epoch in range(start_epoch, epochs):model.train()running_loss = 0.0for images, labels in train_loader:images, labels = images.to(device), labels.to(device)optimizer.zero_grad()with torch.cuda.amp.autocast():outputs = model(images)loss = sum(criterion(outputs[:, i, :], labels[:, i]) for i in range(captcha_length))scaler.scale(loss).backward()scaler.step(optimizer)scaler.update()running_loss += loss.item()val_accuracy = evaluate_accuracy(val_loader)print(f'Epoch [{epoch+1}/{epochs}], Loss: {running_loss / len(train_loader):.4f}, Val Accuracy: {val_accuracy:.4f}')save_checkpoint({'epoch': epoch + 1,'state_dict': model.state_dict(),'optimizer': optimizer.state_dict(),})
6. 可视化预测结果

最后,我们定义了一个函数visualize_predictions来可视化模型的预测结果。

def visualize_predictions(num_samples=16):model.eval()samples, labels = next(iter(DataLoader(val_dataset, batch_size=num_samples, shuffle=True)))samples, labels = samples.to(device), labels.to(device)with torch.no_grad():outputs = model(samples)predicted = torch.argmax(outputs, dim=2)samples = samples.cpu()predicted = predicted.cpu()labels = labels.cpu()fig, axes = plt.subplots(4, 4, figsize=(10, 10))for i in range(16):ax = axes[i // 4, i % 4]ax.imshow(samples[i].squeeze(), cmap='gray')true_text = ''.join([dataset.charset[l] for l in labels[i]])pred_text = ''.join([dataset.charset[p] for p in predicted[i]])ax.set_title(f'True: {true_text}\nPred: {pred_text}')ax.axis('off')plt.show()
7. 训练与可视化

最后,我们调用train_model函数进行模型训练,并使用visualize_predictions函数来可视化模型的预测结果。

train_model(epochs=180, resume=True)
visualize_predictions()

通过上述步骤,我们成功地使用ResNet18模型来识别ImageCaptcha生成的验证码。这种方法不仅提高了验证码识别的准确性,还提升了用户体验。希望本文能为您在验证码识别领域的研究和应用提供有价值的参考。在这里插入图片描述

http://www.lryc.cn/news/434711.html

相关文章:

  • IDC基础学习笔记
  • Mysql基础练习题 1527.患某种疾病的患者 (力扣)
  • Mysql链接异常 | [08001] Public Key Retrieval is not allowed
  • vue3项目中如何动态循环设置ref并获取使用
  • stm32之SPI通信协议
  • Unity 摄像机(Camera)详解
  • 数学基础 -- 线性代数之LU分解
  • 高职人工智能训练师边缘计算实训室解决方案
  • 【Java】SpringCloud中使用set方法报错空指针
  • 芯片杂谈 -- 常聊的内核包含哪些模块
  • 运维问题0002:SAP多模块问题-SAP系统程序在执行时,跳出“加急快件”窗口,提示:快件文档“更新已终止”从作者***收到
  • 深度解析RAG:你必须要了解的RAG优化方法
  • 深度学习驱动下的字符识别:挑战与创新
  • 使用 JAXB 将内嵌的JAVA对象转换为 xml文件
  • 若依项目后台启动报错: [网关异常处理]、503
  • 【C++ Qt day10】
  • GO HTTP库使用
  • 数据结构 - 顺序表
  • 企业如何组建安全稳定的跨国通信网络?
  • OCR在线识别网站现已上线!
  • 排名再升2位 中国平安位列BrandZ最具价值中国品牌第9位
  • k8s集群部署:环境准备
  • <C++> set、map模拟实现
  • 软考学习 数据结构 查找
  • h264 视频流中添加目标检测的位置、类型信息到SEI帧
  • 大模型api谁家更便宜
  • 代码随想录算法训练营第二十三天| 455. 分发饼干、376. 摆动序列、53. 最大子序和
  • react js 路由 Router
  • AplPost使用
  • 【Qt】Qt与Html网页进行数据交互