当前位置: 首页 > news >正文

论文翻译:arxiv-2024 Benchmark Data Contamination of Large Language Models: A Survey

Benchmark Data Contamination of Large Language Models: A Survey
https://arxiv.org/abs/2406.04244

大规模语言模型的基准数据污染:一项综述

文章目录

  • 大规模语言模型的基准数据污染:一项综述
  • 摘要
  • 1 引言

摘要

大规模语言模型(LLMs),如GPT-4、Claude-3和Gemini的快速发展,改变了自然语言处理领域。然而,这也引发了一个重要问题,即基准数据污染(BDC)。这种现象发生在语言模型在训练过程中无意间整合了评估基准的数据,导致评估阶段的性能不准确或不可靠。本文回顾了LLM评估中的BDC这一复杂挑战,并探讨了替代评估方法,以减轻传统基准带来的风险。此外,本文还探讨了在减少BDC风险方面的挑战和未来方向,强调了问题的复杂性以及为确保LLM评估在现实应用中的可靠性所需的创新解决方案。

1 引言

近年来,得益于GPT-4 [107]、Claude-3 [4]和Gemini [137]等大规模语言模型(LLMs)的快速进展,自然语言处理(NLP)领域经历了显著变革。这些模型基于诸如Transformer [142]等深度学习架构,彻底改变了包括内容生成、摘要、机器翻译和问答等领域。通过展现出理解和生成类人文本的卓越能力,它们在学术界和工业界都获得了广泛关注和认可。
在LLM发展的热潮中,一个关键问题浮现:基准数据污染(BDC)。这一现象指的是语言模型在训练过程中整合了与评估基准相关的信息,导致评估阶段的性能偏差或不可靠。当前的挑战涉及LLM的评估过程及其隐私和安全问题 [17, 18, 53, 60, 73]。尽管有些研究认为这种现象是有益的 [12],或不将其视为问题 [16],但学术界的大多数研究认为,BDC对LLM评估的可靠性和有效性构成了重大挑战,削弱了对其输出的信任,阻碍了其在现实中的应用 [69, 83, 98, 119, 126, 178]。
LLM的传统评估方法通常依赖于基准数据集,作为衡量模型性能的标准。尽管这些基准对模型的评估、验证和比较至关重要,但它们也难以避免BDC问题。随着AI生成内容(AIGC)的兴起,这一问题变得愈发复杂且难以检测。用于训练和微调LLM的数据集中可能包含与基准相关的信息,如元数据、标签分布和上下文数据,这些信息可能无意间影响模型的行为和评估性能。因此,基于传统基准的评估可能无法准确反映LLM的真实能力,并可能导致对其性能的错误结论。
面对BDC问题的广泛挑战,研究人员开始探索替代评估方法,以减少传统基准带来的风险。一些有前途的方案被提出,例如通过使用LLM重新生成基准数据 [158, 180, 181],以减少BDC的影响,以及基准无关评估 [24, 87, 166],试图避免完全依赖预定义的基准。这些方法旨在以更灵活、自适应和可靠的方式评估LLM。
随着LLM的快速发展,BDC问题在研究界变得越来越重要。然而,当前还没有一项全面的、系统性的研究来深入讨论和定义这一问题。本文旨在通过提供一项关于LLM中BDC的综合综述,填补这一空白。在本综述中,我们定义了BDC问题,并将现有研究分为两大类:检测技术和缓解策略。第一类关注如何识别和检测BDC风险,而第二类则侧重于缓解当前LLM评估过程中BDC问题的策略。通过进行这项综述,我们提供了对LLM中BDC问题的全面理解,并为这一关键问题的检测和缓解提供了见解。
本文的结构如下。第2节提供了关于LLM的相关背景信息,并定义和讨论了BDC问题,并给出了一些示例。第3节和第4节分别对现有的BDC检测方法和缓解策略进行了全面回顾。检测方法分为匹配型和比较型两类。缓解策略则进一步分为三类:新数据的策划、现有数据的重构和无基准评估。每个类别中都会讨论关键的方法。随后,第5节探讨了在减少BDC风险方面的挑战和未来方向,承认了开发稳健评估策略的复杂性和权衡。

在这里插入图片描述

http://www.lryc.cn/news/434294.html

相关文章:

  • Java+Swing用户信息管理系统
  • 数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值特殊矩阵的压缩存储
  • C# 关于多线程同步不同实现方式
  • 【人工智能学习笔记】4_2 深度学习基础之多层感知机
  • WPS2019如何打出各种横线
  • Vue获取后端重定向拼接的参数
  • vscode spring boot项目编辑yaml不自动提示补全如何解决
  • 算法练习题19——leetcode141环形链表
  • 基于人类反馈的强化学习概述
  • 【SIT1463Q】带振铃抑制功能的CAN收发器,替代TJA1463
  • CCF刷题计划——坐标变换(其二)(前缀和)
  • 游戏开发简述
  • 最新前端开发VSCode高效实用插件推荐清单
  • 分布式调度方案:Elastic-Job
  • 网络安全工程师(白帽子)企业级学习路线
  • 数据结构详细解释
  • 7.1图像平移
  • 海外云手机是否适合运营TikTok?
  • IT 行业中常见的专业名称及其含义
  • 全球开店,Shopee东南亚入驻指南|用友BIP电商通引领电商出海新潮流
  • java当中什么是NIO
  • 【基础】Three.js 自定义几何体和复制几何体
  • 如何使用ChatGPT进行高效的对话生成与优化
  • MySQL系列—8.存储结构
  • vue2、vue3生成二维码
  • Spring Cloud全解析:熔断之Hystrix线程隔离导致的问题
  • 网络编程项目(云词典项目)
  • Java Spring Boot 项目中的密码加密与验证开发案例手册
  • VueSax-解决Vue3报错问题,并支持typescript
  • 回归预测 | Matlab基于贝叶斯算法优化XGBoost(BO-XGBoost/Bayes-XGBoost)的数据回归预测+交叉验证