当前位置: 首页 > news >正文

代码随想录刷题day27丨455.分发饼干 ,376. 摆动序列 ,53. 最大子序和

代码随想录刷题day27丨455.分发饼干 ,376. 摆动序列 ,53. 最大子序和

1.贪心算法理论基础

  • 贪心的本质是选择每一阶段的局部最优,从而达到全局最优

  • 这么说有点抽象,来举一个例子:

    例如,有一堆钞票,你可以拿走十张,如果想达到最大的金额,你要怎么拿?

    指定每次拿最大的,最终结果就是拿走最大数额的钱。

    每次拿最大的就是局部最优,最后拿走最大数额的钱就是推出全局最优。

  • 再举一个例子如果是 有一堆盒子,你有一个背包体积为n,如何把背包尽可能装满,如果还每次选最大的盒子,就不行了。这时候就需要动态规划。

  • 贪心算法并没有固定的套路。难点就是如何通过局部最优,推出整体最优。

  • 靠自己手动模拟,如果模拟可行,就可以试一试贪心策略,如果不可行,可能需要动态规划。

  • 如何验证可不可以用贪心算法呢?

    • 最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧
  • 贪心算法一般分为如下四步:

    • 将问题分解为若干个子问题
    • 找出适合的贪心策略
    • 求解每一个子问题的最优解
    • 将局部最优解堆叠成全局最优解

2.题目

2.1分发饼干

  • 题目链接:455. 分发饼干 - 力扣(LeetCode)

    在这里插入图片描述

  • 视频讲解:贪心算法,你想先喂哪个小孩?| LeetCode:455.分发饼干_哔哩哔哩_bilibili

  • 文档讲解:https://programmercarl.com/0455.%E5%88%86%E5%8F%91%E9%A5%BC%E5%B9%B2.html

  • 解题思路:贪心

    • 为了满足更多的小孩,就不要造成饼干尺寸的浪费。

      大尺寸的饼干既可以满足胃口大的孩子也可以满足胃口小的孩子,那么就应该优先满足胃口大的。

    • 这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩

      在这里插入图片描述

  • 代码:

    class Solution {public int findContentChildren(int[] g, int[] s) {Arrays.sort(g);Arrays.sort(s);int result = 0;int index = s.length -1;for(int i = g.length - 1;i >= 0;i--){if(index >= 0 && s[index] >= g[i]){result++;index--;}}return result;}
    }
    
  • 总结:

    • 小饼干先喂饱小胃口也可以

2.2摆动序列

  • 题目链接:376. 摆动序列 - 力扣(LeetCode)

    在这里插入图片描述

  • 视频讲解:贪心算法,寻找摆动有细节!| LeetCode:376.摆动序列_哔哩哔哩_bilibili

  • 文档讲解:https://programmercarl.com/0376.%E6%91%86%E5%8A%A8%E5%BA%8F%E5%88%97.html

  • 解题思路:贪心

    • 在这里插入图片描述

    • 局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值

      整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列

    • 在计算是否有峰值的时候,大家知道遍历的下标 i ,计算 prediff(nums[i] - nums[i-1]) 和 curdiff(nums[i+1] - nums[i]),如果prediff < 0 && curdiff > 0 或者 prediff > 0 && curdiff < 0 此时就有波动就需要统计。

    • 本题要考虑三种情况:

      1. 情况一:上下坡中有平坡

        在这里插入图片描述

      2. 情况二:数组首尾两端

        • 针对序列[2,5],可以假设为[2,2,5],这样它就有坡度了即 preDiff = 0,result 初始为 1(默认最右面有一个峰值)

          在这里插入图片描述

      3. 情况三:单调坡中有平坡

        在这里插入图片描述

        • 我们应该什么时候更新 prediff 呢?
          • 我们只需要在 这个坡度 摆动变化的时候,更新 prediff 就行,这样 prediff 在 单调区间有平坡的时候 就不会发生变化,造成我们的误判。
  • 代码:

    class Solution {public int wiggleMaxLength(int[] nums) {if(nums.length <= 1){return nums.length;}//当前差值int curDiff = 0;//上一个差值int preDiff = 0;//默认最右边有一个峰值int count = 1;//遍历到倒数第二个就行,最右边的已经默认了for(int i = 0;i < nums.length -1;i++){curDiff = nums[i + 1] - nums[i];if((curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)){count++;preDiff = curDiff;}}return count;}
    }
    
  • 总结:

    • 为什么 preDiff = curDiff 放在条件判断内部这个位置?
      • 为了保证只有在波动方向改变时才更新 preDiff。如果波动方向没有变化(即不满足 (curDiff > 0 && preDiff <= 0) || (curDiff < 0 && preDiff >= 0)),那么 preDiff 保持不变,等待下一次有效的波动。

2.3最大子序和

  • 题目链接:53. 最大子数组和 - 力扣(LeetCode)

    在这里插入图片描述

  • 视频讲解:贪心算法的巧妙需要慢慢体会!LeetCode:53. 最大子序和_哔哩哔哩_bilibili

  • 文档讲解:https://programmercarl.com/0053.%E6%9C%80%E5%A4%A7%E5%AD%90%E5%BA%8F%E5%92%8C.html

  • 解题思路:贪心

    • 局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。
    • 全局最优:选取最大“连续和”
    • 局部最优的情况下,并记录最大的“连续和”,可以推出全局最优
  • 代码:

    class Solution {public int maxSubArray(int[] nums) {int result = Integer.MIN_VALUE;int count = 0;for(int i = 0;i < nums.length;i++){count += nums[i];if(count > result){result = count;}if(count < 0){count = 0;}}return result;}
    }
    
  • 总结:

    • 遇到连续和为负数才更新起始位置。并不是遇到负数就更新。
http://www.lryc.cn/news/433655.html

相关文章:

  • Detect It Easy
  • c++开关灯
  • DevOps实现CI/CD实战(六)- Jenkins集成k8s
  • 张雪峰:物联网行业迎高光时刻!如何选择?我们诚聘销售工程师!
  • 利用多文件编程实现顺序表的创建,判满,插入,输出
  • 百度快照劫持之JS劫持诊断与恢复一例
  • 深入探讨Go语言中的切片与数组操作
  • 【WPS Excel】复制表格时,提示“图片太大,超过部份将被截去“ 问题
  • 驱动(RK3588S)第九课时:多节点驱动与函数接口
  • Linux系统下配置MySQL
  • 信捷 XD PLC POU编程之FB
  • 终于有人把云计算、大数据和人工智能讲明白了!
  • 【编程底层思考】详解Java内存模型(JMM)原理及其作用
  • Docker的基本概念和优势
  • 数据结构————内核链表
  • 使用API接口获取某宝商品数据详情
  • 用Python实现时间序列模型实战——Day 15: 时间序列模型的选择与组合
  • 大数据之Flink(五)
  • SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析
  • 基于 jenkins 的持续测试方案
  • 我算见识到算法岗transformer面试的难度了
  • CommonCollections1
  • 6、关于Medical-Transformer
  • 19_单片机开发常用工具的使用
  • 最新版微服务项目搭建
  • spring揭秘19-spring事务01-事务抽象
  • 基于Matlab的图像去雾系统(四种方法)关于图像去雾的基本算法代码的集合,方法包括局部直方图均衡法、全部直方图均衡法、暗通道先验法、Retinex增强。
  • 油猴插件录制请求,封装接口自动化参数
  • 循环购模式!结合引流和复购于一体的商业模型!
  • Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧