当前位置: 首页 > news >正文

【人工智能/机器学习/机器人】数学基础-学习笔记

函数

奇偶性:

  • 偶函数: f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x)     y轴对称
    f ( x ) = x 2 f(x)=x^2 f(x)=x2     f ( − x ) = ( − x ) 2 = x 2 = f ( x ) f(-x)=(-x)^2=x^2=f(x) f(x)=(x)2=x2=f(x)

  • 奇函数: f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x)  原点对称
    f ( x ) = x 3 f(x)=x^3 f(x)=x3     f ( − x ) = ( − x ) 3 = − x 3 = − f ( x ) f(-x)=(-x)^3=-x^3=-f(x) f(x)=(x)3=x3=f(x)

  • 周期性: f ( x + T ) = f ( x ) f(x+T)=f(x) f(x+T)=f(x)

  • 单调性:

  • 在这里插入图片描述

极限

数列

按照一定次数排列的一列数: u 1 , u 2 , u 3 , ⋅ ⋅ ⋅ , u n , ⋅ ⋅ ⋅ u_1,u_2,u_3,···,u_n,··· u1,u2,u3,⋅⋅⋅,un,⋅⋅⋅,其中 u n u_n un叫做通项

对于数列 { u n } \{u_n\} {un},如果当 n n n无限大时,其通项无限接近于一个参数 A A A
则称该数列以 A A A为极限或称数列收敛于 A A A,否则称数列为发散
lim ⁡ n → ∞ u n = A \lim\limits_ {n \to \infty}u_n=A nlimun=A ,或 u n → A ( n → ∞ ) u_n \to A (n \to \infty) unA(n)
lim ⁡ n → ∞ 1 3 n = 0 \lim\limits_{n \to \infty}{\frac 1{3^n}}=0 nlim3n1=0 lim ⁡ n → ∞ n n + 1 = 1 \lim\limits_{n \to \infty}{ \frac n{n+1}}=1 nlimn+1n=1 lim ⁡ n → ∞ 2 n \lim\limits_{n \to \infty}2^n nlim2n不存在

极限

符号表示:
x → ∞ x \to \infty x表示“当 ∣ x ∣ |x| x无限增大时”;
x → + ∞ x \to +\infty x+表示“当 x x x无限增大时”;
x → − ∞ x \to -\infty x表示“当 x x x无限减少时”;
x → x 0 x \to x_0 xx0表示“当 x x x x 0 x_0 x0的左右两侧无限接近于 x 0 x_0 x0时”;
x → x 0 + x \to x^+_0 xx0+表示“当 x x x x 0 x_0 x0的右侧无限接近于 x 0 x_0 x0时”;
x → x 0 − x \to x^-_0 xx0表示“当 x x x x 0 x_0 x0的左侧无限接近于 x 0 x_0 x0时”;

在这里插入图片描述

  • 函数在 x 0 x_0 x0的邻域内有定义, lim ⁡ x → x 0 f ( x ) = A \lim\limits_{x \to x_0}f(x)=A xx0limf(x)=A,或 f ( x ) → A ( x → x 0 ) f(x) \to A(x \to x_0) f(x)A(xx0)
    lim ⁡ x → 1 x 2 − 1 x − 1 = lim ⁡ x → 1 ( x − 1 ) ( x + 1 ) x − 1 = 2 \lim\limits_{x \to 1}{\frac {x^2-1}{x-1}}=\lim\limits_{x \to 1}{\frac {(x-1)(x+1)}{x-1}}=2 x1limx1x21=x1limx1(x1)(x+1)=2
  • 左右极限:函数在左半邻域 ( x 0 − δ , x 0 ) (x_0-\delta,x_0) (x0δ,x0)或右半邻域 ( x 0 , x 0 + δ ) (x_0,x_0+\delta) (x0,x0+δ)内有定义
    lim ⁡ x → x 0 + f ( x ) = A \lim\limits_{x \to x^+_0}f(x)=A xx0+limf(x)=A,或 f ( x ) → A ( x → x 0 + ) f(x) \to A(x \to x^+_0) f(x)A(xx0+) f ( x 0 + 0 ) = A f(x_0+0)=A f(x0+0)=A
    lim ⁡ x → x 0 − f ( x ) = A \lim\limits_{x \to x^-_0}f(x)=A xx0limf(x)=A,或 f ( x ) → A ( x → x 0 − ) f(x) \to A(x \to x^-_0) f(x)A(xx0) f ( x 0 − 0 ) = A f(x_0-0)=A f(x00)=A

持续更新!!!!!

http://www.lryc.cn/news/431905.html

相关文章:

  • 视频安防监控LntonAIServer安防管理平台抖动检测和过亮过暗检测
  • 网络模型及协议介绍
  • 手撕HashMap源码
  • OceanBase block_file与log过大 的问题
  • 【Focal Loss 本质】
  • 端口安全老化细节
  • 【C++】—— string 模拟实现
  • 详解TensorRT的C++高性能部署以及C++部署Yolo实践
  • 手机如何切换网络IP地址:‌方法详解与操作指南‌
  • 南通网站建设手机版网页
  • macos系统内置php文件列表 系统自带php卸载方法
  • 微信小程序认证和备案
  • C++复习day05
  • python数值误差
  • 基于FPGA的OV5640摄像头图像采集
  • CDN ❀ Http协议标准缓存字段梳理
  • 浅谈NODE的NPM命令和合约测试开发工具HARDHAT
  • k8s-pod 实战六 (如何在不同的部署环境中调整startupprobe的参数?)
  • 和服务端系统的通信
  • python 实现perfect square完全平方数算法
  • 【漏洞复现】某客圈子社区小程序审计(0day)
  • 信息安全数学基础(1)整除的概念
  • SearchGPT与谷歌:早期分析及用户反馈
  • VUE饿了么UPload组件自定义上传
  • 2.1概率统计的世界
  • SpringBoot使用QQ邮箱发送邮件
  • 使用 OpenCV 和 NumPy 进行图像处理:HSV 范围筛选实现PS抠图效果
  • IIS中间件
  • BMP280气压传感器详解(STM32)
  • DWPD指标:为何不再适用于大容量SSD?