当前位置: 首页 > news >正文

排序算法之计数排序详细解读(附带Java代码解读)

计数排序(Counting Sort)是一种非比较型的排序算法,它通过统计每个元素的出现频率,然后计算元素的位置信息,最后将元素放到正确的位置,从而实现排序。计数排序特别适用于元素范围有限的情况,比如整数的范围较小。

算法思想

计数排序的基本思想是:

  1. 确定范围:找出待排序数据的最小值和最大值。
  2. 计数:创建一个计数数组,用来统计每个元素出现的次数。
  3. 累积:将计数数组中的计数值累积,以确定每个元素的最终位置。
  4. 排序:根据累积的计数信息将元素放到正确的位置。

过程示例

假设有一个待排序的数组:[4, 2, 2, 8, 3, 3, 1]

步骤 1: 确定范围

  1. 找到最小值和最大值:
    • 最小值 = 1
    • 最大值 = 8

步骤 2: 计数

  1. 创建一个计数数组 count,大小为 最大值 - 最小值 + 1

    • count 数组大小为 8(从 1 到 8)。
    • 初始化 count 数组为全零:count = [0, 0, 0, 0, 0, 0, 0, 0]
  2. 统计每个元素出现的次数:

    • 4 → count[4 - 1] += 1count = [0, 0, 0, 1, 0, 0, 0, 0]
    • 2 → count[2 - 1] += 1count = [0, 1, 0, 1, 0, 0, 0, 0]
    • 2 → count[2 - 1] += 1count = [0, 2, 0, 1, 0, 0, 0, 0]
    • 8 → count[8 - 1] += 1count = [0, 2, 0, 1, 0, 0, 0, 1]
    • 3 → count[3 - 1] += 1count = [0, 2, 1, 1, 0, 0, 0, 1]
    • 3 → count[3 - 1] += 1count = [0, 2, 2, 1, 0, 0, 0, 1]
    • 1 → count[1 - 1] += 1count = [1, 2, 2, 1, 0, 0, 0, 1]

步骤 3: 累积

  1. count 数组进行累积:

    • count = [1, 3, 5, 6, 6, 6, 6, 7]
  2. 累积过程:

    • count[1] += count[0]count = [1, 3, 2, 1, 0, 0, 0, 1]
    • count[2] += count[1]count = [1, 3, 5, 1, 0, 0, 0, 1]
    • count[3] += count[2]count = [1, 3, 5, 6, 0, 0, 0, 1]
    • count[4] += count[3]count = [1, 3, 5, 6, 6, 0, 0, 1]
    • count[5] += count[4]count = [1, 3, 5, 6, 6, 6, 0, 1]
    • count[6] += count[5]count = [1, 3, 5, 6, 6, 6, 6, 1]
    • count[7] += count[6]count = [1, 3, 5, 6, 6, 6, 6, 7]

步骤 4: 排序

  1. 创建一个输出数组 output,用于存放排序后的结果:

    • output = [0, 0, 0, 0, 0, 0, 0, 0]
  2. 从原数组中取出元素,并根据 count 数组确定其位置:

    • 4 → output[count[4 - 1] - 1] = 4count[4 - 1] -= 1output = [0, 0, 0, 4, 0, 0, 0, 0]
    • 2 → output[count[2 - 1] - 1] = 2count[2 - 1] -= 1output = [0, 0, 2, 4, 0, 0, 0, 0]
    • 2 → output[count[2 - 1] - 1] = 2count[2 - 1] -= 1output = [0, 2, 2, 4, 0, 0, 0, 0]
    • 8 → output[count[8 - 1] - 1] = 8count[8 - 1] -= 1output = [0, 2, 2, 4, 0, 0, 0, 8]
    • 3 → output[count[3 - 1] - 1] = 3count[3 - 1] -= 1output = [0, 2, 2, 3, 0, 0, 0, 8]
    • 3 → output[count[3 - 1] - 1] = 3count[3 - 1] -= 1output = [0, 2, 2, 3, 3, 0, 0, 8]
    • 1 → output[count[1 - 1] - 1] = 1count[1 - 1] -= 1output = [1, 2, 2, 3, 3, 0, 0, 8]

    最终 output 数组为:[1, 2, 2, 3, 3, 4, 8]

算法复杂度

  • 时间复杂度:

    • 最坏情况: O(n + k)
    • 平均情况: O(n + k)
    • 最佳情况: O(n + k)

    其中,n 是元素的数量,k 是元素的范围(最大值 - 最小值 + 1)。

  • 空间复杂度: O(n + k) 需要额外的空间来存储计数数组和输出数组。

优点

  1. 稳定排序:计数排序是一种稳定的排序算法,即相同元素的相对顺序不会改变。
  2. 时间复杂度低:在元素范围有限的情况下,时间复杂度接近线性。

缺点

  1. 空间复杂度高:需要额外的空间来存储计数数组,特别是当元素的范围很大时。
  2. 不适用大范围数据:当数据范围远大于元素数量时,计数排序的空间复杂度可能变得不可接受。

Java代码解读

public class CountingSort {// 主方法:执行计数排序public static void countingSort(int[] arr) {if (arr.length == 0) return;// 1. 找到最小值和最大值int min = arr[0];int max = arr[0];for (int num : arr) {if (num < min) min = num;if (num > max) max = num;}// 2. 创建计数数组int range = max - min + 1;int[] count = new int[range];int[] output = new int[arr.length];// 3. 计数每个元素的出现次数for (int num : arr) {count[num - min]++;}// 4. 累积计数数组for (int i = 1; i < range; i++) {count[i] += count[i - 1];}// 5. 排序元素到输出数组for (int i = arr.length - 1; i >= 0; i--) {output[count[arr[i] - min] - 1] = arr[i];count[arr[i] - min]--;}// 6. 将排序结果复制回原数组System.arraycopy(output, 0, arr, 0, arr.length);}public static void main(String[] args) {int[] arr = {4, 2, 2, 8, 3, 3, 1};System.out.println("排序前的数组:");for (int num : arr) {System.out.print(num + " ");}System.out.println();countingSort(arr);System.out.println("排序后的数组:");for (int num : arr) {System.out.print(num + " ");}}
}

代码说明

  1. countingSort方法:

    • countingSort 方法首先找到数组的最小值和最大值,然后创建计数数组和输出数组。
    • 统计每个元素的出现次数,并将计数数组进行累积。
    • 根据累积的计数信息将元素放到正确的位置,并将排序结果复制回原数组。
  2. 找最小值和最大值:

    • 确定数据的范围,以便创建适当大小的计数数组。
  3. 计数每个元素:

    • 使用计数数组统计每个元素的出现次数。
  4. 累积计数数组:

    • 将计数数组累积,以确定每个元素的最终位置。
  5. 排序到输出数组:

    • 根据累积计数信息将元素放到正确的位置,并将排序结果复制回原数组。

 

 

http://www.lryc.cn/news/431674.html

相关文章:

  • Linux:如何使用 Crontab
  • AI模型:追求全能还是专精?-- 之7 智能工厂程序设计
  • 如何在本地服务器部署SeaFile自托管文件共享服务结合内网穿透打造私有云盘?
  • 学习记录:js算法(二十五):合并两个有序链表
  • 43. 1 ~ n 整数中 1 出现的次数【难】
  • K8S - 理解volumeMounts 中的subpath
  • java工程师成功转型大数据
  • visual studio 2022更新以后,之前的有些工程编译出错,升级到Visual studio Enterprise 2022 Preview解决
  • Linux 性能调优技巧
  • 【网络安全】WordPress Uncontrolled Resource Consumption
  • gitee绑定公钥后依旧无法使用_gitee push添加公钥无效
  • Linux 删除 当前下的 mysql-8.0.31 空文件夹
  • 2024,中国服务器操作系统迎云智主升浪
  • STM32快速复习(九)RTC时钟模块
  • Nacos注册中心与OpenFeign远程调用
  • 【基础算法总结】双指针
  • 教你制作一本一对一授权才能阅读的样本册
  • 【DEV工具-IDEA】idea的光标变成黑块了?
  • 没通过算法备案 或许是这几点你没做好
  • 力扣172.阶乘后的0
  • Oracle 19c数据库:Windows详细安装与配置指南
  • 解决职业摔跤手分类问题的算法与实现
  • 微擎框架
  • 容器化技术在非结构化数据中台的部署研究
  • RK3399 android7.1 话柄电话功能
  • 实习四十:部署project_exam_system项目——及容器的编排
  • 栈,队列
  • 新增一个数组传递给后端
  • Flutter集成Firebase中的Realtime Analytics
  • 2024国赛数学建模A题B题C题D题E题思路资料模型