当前位置: 首页 > news >正文

java重点学习-redis

一.redis

穿透无中生有key,布隆过滤nul隔离

锁与非期解难题。缓存击穿过期key,

雪崩大量过期key,过期时间要随机。

面试必考三兄弟,可用限流来保底

1.1 Redis的使用场景

根据自己简历上的业务进行回答

·缓存穿透、击穿、雪崩、双写一致、持久化、数据过期、淘汰策略

分布式锁 setnx、redisson

总结

1.2 什么是缓存穿透,怎么解决

缓存穿透:查询一个不存在的数据,mysql查询不到数据也不会直接写入缓存,就会导致每次请求都查数据库

解决方案一:缓存空数据解决方案二:布隆过滤器

1.3.什么是缓存击穿

缓存击穿:给某一个key设置了过期时间,当key过期的时候,恰好这时间点对这个key有大量的并发请求过来,这些并发的请求可能会瞬间把DB压垮

解决方案一:互斥锁,强一致,性能差

解决方案二:逻辑过期,高可用,性能优,不能保证数据绝对一致

1.4.什么是缓存雪崩

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

解决方案一:给不同的Key的TTL添加随机值

解决方案二:利用Redis集群提高服务的可用性

解决方案三:给缓存业务添加降级限流策略

解决方案四:给业务添加多级缓存

1.5 数据库和redis双写一致性如何保证?redis做为缓存,mysql的数据如何与redis进行同步呢?

介绍自己简历上的业务,我们当时是把文章的热点数据存入到了缓存中,虽然是热点数据,但是实时要求性并没有那么高,所以,我们当时采用的是异步的方案同步的数据

我们当时是把抢券的库存存入到了缓存中,这个需要实时的进行数据同步,为了保证数据的强一致,我们当时采用的是redisson提供的读写锁来保证数据的同步

那你来介绍一下异步的方案(你来介绍-下redisson读写锁的这种方案)

---允许延时一致的业务,采用异步通知

a.使用MQ中间中间件,更新数据之后,通知缓存删除

b.利用canal中间件,不需要修改业务代码,伪装为mysql的一个从节点,canal通过读取binlog数据更新缓存

---强一致性的,采用Redisson提供的读写锁

a.共享锁:读锁readLock,加锁之后,其他线程可以共享读操作

b.排他锁:也叫独占锁writeLock,加锁之后,阻塞其他线程读写操作

1.6 redis持久化

1.7 Redis的数据过期策略

惰性删除:访问key的时候判断是否过期,如果过期,则删除

定期删除:定期检查一定量的key是否过期(SLOW模式+FAST模式)

Redis的过期删除策略:惰性删除+定期删除两种策略进行配合使用

 redis的淘汰策略有哪些

数据淘汰策略

  • Redis提供了8种不同的数据淘汰策略,默认是noeviction不删除任何数据,内存不足直接报错
  • LRU:最少最近使用。用当前时间减去最后一次访问时间,这个值越大则淘汰优先级越高。
  • LFU:最少频率使用。会统计每个key的访问频率,值越小淘汰优先级越高

平时开发过程中用的比较多的就是alkeys-lru(结合自己的业务场景)

1.8 redis分布式锁,是如何实现的?

先按照自己简历上的业务进行描述分布式锁使用的场景

我们当使用的redisson实现的分布式锁,底层是setnx和lua脚本(保证原子性)

Redisson实现分布式锁如何合理的控制锁的有效时长?

在redisson的分布式锁中,提供了一个WatchDog(看门狗),一个线程获取锁成功以后WatchDog会给持有锁的线程续期(默认是每隔10秒续期一次)

Redisson的这个锁,可以重入吗?

可以重入,多个锁重入需要判断是否是当前线程,在redis中进行存储的时候使用的hash结构来存储线程信息和重入的次数

Redisson锁能解决主从数据一致的问题吗

不能解决,但是可以使用redisson提供的红锁来解决,但是这样的话,性能就太低了,如果业务中非要保证数据的强一致性,建议采用zookeeper实现的分布式锁

1.9 redis的主从同步

单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离-般都是一主多从,主节点负责写数据,从节点负责读数据

能说一下,主从同步数据的流程

全量同步:

1.从节点请求主节点同步数据(replication id、offset )

2.主节点判断是否是第一次请求,是第一次就与从节点同步版本信息(replication idoffset)

3.主节点执行bgsave,生成rdb文件后,发送给从节点去执行

4.在rdb生成执行期间,主节点会以命令的方式记录到缓冲区(一个日志文件)

5.把生成之后的命令日志文件发送给从节点进行同步

增量同步:

1.从节点请求主节点同步数据,主节点判断不是第一次请求,不是第一次就获取从节点的offset值

2.主节点从命令日志中获取offset值之后的数据,发送给从节点进行数据同步

1.10 怎么保证Redis的高并发高可用(redis哨兵集群)

哨兵模式:实现主从集群的自动故障恢复(监控、自动故障恢复、通知)

你们使用redis是单点还是集群,哪种集群

主从(1主1从)+哨兵就可以了。单节点不超过10G内存,如果Redis内存不足则可以给不同服务分配独立的Redis主从节点

redis集群脑裂,该怎么解决呢?

集群脑裂是由于主节点和从节点和sentinel处于不同的网络分区,使得sentinel没有能够心跳感知到主节点,所以通过选举的方式提升了一个从节点为主,这样就存在了两个master,就像大脑分裂了一样,这样会导致客户端还在老的主节点那里写入数据,新节点无法同步数据,当网络恢复后,sentinel会将老的主节点降为从节点,这时再从新master同步数据,就会导致数据丢失

解决:我们可以修改redis的配置,可以设置最少的从节点数量以及缩短主从数据同步的延迟时间,达不到要求就拒绝请求就可以避免大量的数据丢失

1.11 redis的分片集群有什么作用

a.集群中有多个master,每个master保存不同数据

b.每个master都可以有多个slave节点

c.master之间通过ping监测彼此健康状态1

d.客户端请求可以访问集群任意节点,最终都会被转发到正确节点

Redis分片集群中数据是怎么存储和读取的?

Redis 分片集群引入了哈希槽的概念,Redis 集群有 16384 个哈希槽

将16384个插槽分配到不同的实例

读写数据:根据key的有效部分计算哈希值,对16384取余(有效部分,如果key前面有太括号,大括号的内容就是有效部分,如果没有,则以key本身做为有效部分)余数做为插槽,寻找插槽所在的实例

1.12 能解释-下redis中的 I/O多路复用模型?

1.I/0多路复用

是指利用单个线程来同时监听多个Socket ,并在某个Socket可读、可写时得到通知,从而避免无效的等待,充分利用CPU资源。目前的I/0多路复用都是采用的epoll模式实现,它会在通知用户进程Socket就绪的同时,把已就绪的Socket写入用户空间,不需要挨个遍历Socket来判断是否就绪,提升了性能。

2. Redis网络模型

就是使用I/0多路复用结合事件的处理器来应对多个Socket请求

> 连接应答处理器

>命令回复处理器,在Redis6.0之后,为了提升更好的性能,使用了多线程来处理回复事件上

>命令请求处理器,在Redis6.0之后,将命令的转换使用了多线程,增加命令转换速度,在命令执行的时 候,依然是单线程

http://www.lryc.cn/news/430957.html

相关文章:

  • 每日刷题(图论)
  • Requestium - 将Requests和Selenium合并在一起的自动化测试工具
  • mysql和pg等数据库之间的数据迁移实战分享
  • 消息中间件都有哪些
  • 数据结构(3)内核链表
  • Linux 硬件学习 s3c2440 arm920t蜂鸣器
  • 提交保存,要做重复请求拦截,避免出现重复保存的问题
  • 华为 HCIP-Datacom H12-821 题库 (3)
  • spring-boot 事件
  • 合碳智能 × Milvus:探索化学合成新境界——逆合成路线设计
  • 二分查找 | 二分模板 | 二分题目解析
  • uni-app应用更新(Android端)
  • JavaEE(2):前后端项目之间的交互
  • (已开源-CVPR 2024)YOLO-World: Real-Time Open-Vocabulary Object Detection
  • Spring6梳理4——SpringIoC容器
  • SpringBoot2:请求处理原理分析-FORM表单请求接口
  • Monkey日志ANR、CRASH、空指针异常及其他异常数据分析
  • Vue 3结合Element Plus中,实现一个级联选择器(Cascader)来展示省市区
  • 使用卫星仿真软件STK的一些应用和思考(星地链路、星间链路)
  • pytorch对不同的可调参数,分配不同的学习率
  • 零基础学习Python(八)—— time模块、request模块、数据分析和自动化办公相关模块、jieba模块、文件操作和os相关模块的简单介绍
  • 快速回顾-HTML5
  • 视频技术未来展望:EasyCVR如何引领汇聚融合平台新趋势
  • 7个流行的开源数据治理工具
  • js | XMLHttpRequest
  • 2024国赛数学建模A题思路模型代码
  • 使用SVD(奇异值分解)进行降维的奇妙之旅
  • 【C++ 第二十一章】特殊类的设计(学习思路)
  • Java设计模式【命令模式】-行为型
  • 【HarmonyOS】一键扫码功能