当前位置: 首页 > news >正文

【机器学习】经典CNN架构


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


文章目录

  • 经典CNN架构
    • 1. 引言
    • 2. LeNet
    • 3. AlexNet
    • 4. VGGNet
    • 5. GoogLeNet(Inception)
    • 6. ResNet
    • 7. 总结

经典CNN架构

1. 引言

卷积神经网络(Convolutional Neural Networks, CNN)是深度学习中最成功的模型之一,在计算机视觉、自然语言处理等领域取得了巨大成功。本文将介绍几种经典的CNN架构,包括LeNet、AlexNet、VGGNet、GoogLeNet(Inception)和ResNet等,探讨它们的创新点和发展历程。
在这里插入图片描述

2. LeNet

LeNet是最早的CNN架构之一,由Yann LeCun等人于1998年提出,用于手写数字识别。它的结构如下:

INPUT => CONV => POOL => CONV => POOL => FC => FC => OUTPUT

其中:

  • CONV: 卷积层,提取局部特征
  • POOL: 池化层,降低特征维度
  • FC: 全连接层,进行分类

LeNet的创新之处在于引入了卷积层和池化层,极大地减少了网络参数,提高了模型的泛化能力。
在这里插入图片描述

3. AlexNet

AlexNet是2012年ImageNet大赛的冠军模型,由Alex Krizhevsky等人提出,被认为是深度学习在计算机视觉领域的开端。它的结构如下:

INPUT => CONV => POOL => CONV => POOL => CONV => CONV => CONV => POOL => FC => FC => FC => OUTPUT

AlexNet的主要创新点包括:

  1. 使用了ReLU激活函数,提高了训练效率。
  2. 引入了Dropout技术,有效缓解了过拟合问题。
  3. 利用GPU并行计算,大大加快了训练速度。
  4. 数据增强技术,如翻转、裁剪等,增加了训练数据的多样性。
    在这里插入图片描述

4. VGGNet

VGGNet是2014年ImageNet大赛的亚军模型,由Karen Simonyan和Andrew Zisserman提出。它的结构如下:

INPUT => CONV => CONV => POOL => CONV => CONV => POOL => CONV => CONV => CONV => POOL => CONV => CONV => CONV => POOL => FC => FC => FC => OUTPUT

VGGNet的特点是使用了连续的3x3小卷积核,代替了AlexNet中的大卷积核,提高了非线性表达能力。同时,VGGNet也探索了不同深度的网络结构,发现深度对提高性能至关重要。
在这里插入图片描述

5. GoogLeNet(Inception)

GoogLeNet是2014年ImageNet大赛的冠军模型,由Christian Szegedy等人提出。它的核心是Inception模块,如下所示:

                 /-------\|       ||  1x1  ||       |\-------/||/-------\  /-------\  /-------\|       |  |       |  |       ||  3x3  |  |  5x5  |  |  3x3  ||       |  |       |  |       |\-------/  \-------/  \-------/||/-------\|  1x1  ||       |\-------/|

Inception模块通过并行的卷积核组合,提高了网络的表达能力,同时控制了参数数量。GoogLeNet还引入了辅助分类器,缓解了梯度消失问题。
在这里插入图片描述

6. ResNet

ResNet是2015年ImageNet大赛的冠军模型,由Kaiming He等人提出。它的核心是残差模块(Residual Block),如下所示:

                   /-----------\|           ||    X      ||           |\-----------/|/-----------\|           ||  Weight   ||           |\-----------/|/-----------\|           || ReLU      ||           |\-----------/|/-----------\|           ||  Weight   ||           |\-----------/|/-----------\|           || ReLU      ||           |\-----------/||/-----------\|           ||    +      ||           |\-----------/|

残差模块通过引入shortcut connection,使得梯度可以直接传递到较浅层,有效缓解了梯度消失/爆炸问题,从而可以训练出更深的网络。ResNet在ImageNet数据集上取得了极高的分类精度。
在这里插入图片描述

7. 总结

本文介绍了几种经典的CNN架构,包括LeNet、AlexNet、VGGNet、GoogLeNet和ResNet等。这些架构不断推进了CNN的发展,提出了诸如卷积、池化、残差连接等创新技术,极大地提高了CNN在计算机视觉等领域的性能。未来,CNN仍将在各个领域发挥重要作用。

End

http://www.lryc.cn/news/430618.html

相关文章:

  • 图像数据处理21
  • day37动态规划+三.Github链接本地仓库
  • 设备运维故障排查与修复技巧
  • 探索Python的自动化魔法:AutoIt库揭秘
  • 【I/O多路复用】
  • 【python报错已解决】“IndexError: list index out of range”
  • oracle和mysql查询某字段在哪个表中
  • TCP vs UDP:揭秘可靠性与效率之争
  • “树”的高度的计算——CSP-J1真题详解
  • Docker介绍、docker安装以及实现docker的远程管理
  • 【UE5】基于摄像机距离逐渐剔除角色
  • LabVIEW优化内存使用
  • 多进程和多线程基础概念LINUX
  • React Native的Android端fetch的网络请求FormData请求错误:TypeError:Network request failed
  • python之matplotlib (1 介绍及基本用法)
  • ROS2常用指令
  • SQL注入(原理、分类、union、POST注入)
  • 【勒索病毒应急响应流程】
  • C ++初阶:C++入门级知识点
  • php中如何高效地实现一个函数以判断给定日期是否位于多个预定义的时间范围内,同时确保代码的可读性、可维护性和性能优化
  • 存在重复元素 II(LeetCode)
  • 认知杂谈21
  • 2024前端面试题-工程化篇
  • 【附源码】Python :PYQT界面点击按钮随机变色
  • [Qt][QSS][下]详细讲解
  • RAII在实现webserver这个项目中是怎么体现的?起到了什么作用
  • QT下显示自己派生的QWidget界面(提升为)
  • jvm监控工具一览
  • 使用 Visual Studio 编辑器作为 DailyNotes 的 markdown 编辑器
  • Linux下进程间的通信--管道