当前位置: 首页 > news >正文

LLM之基于llama-index部署本地embedding与GLM-4模型并初步搭建RAG(其他大模型也可,附上ollma方式运行)

前言

日常没空,留着以后写

llama-index简介

官网:https://docs.llamaindex.ai/en/stable/

简介也没空,以后再写

注:先说明,随着官方的变动,代码也可能变动,大家运行不起来,可以进官网查查资料

加载本地embedding模型

如果没有找到 llama_index.embeddings.huggingface

那么:pip install llama_index-embeddings-huggingface

还不行进入官网,输入huggingface进行搜索

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import SettingsSettings.embed_model = HuggingFaceEmbedding(model_name=f"{embed_model_path}",device='cuda')

 加载本地LLM模型

还是那句话,如果以下代码不行,进官网搜索Custom LLM Model

from llama_index.core.llms import (CustomLLM,CompletionResponse,CompletionResponseGen,LLMMetadata,
)
from llama_index.core.llms.callbacks import llm_completion_callback
from transformers import AutoTokenizer, AutoModelForCausalLMclass GLMCustomLLM(CustomLLM):context_window: int = 8192  # 上下文窗口大小num_output: int = 8000  # 输出的token数量model_name: str = "glm-4-9b-chat"  # 模型名称tokenizer: object = None  # 分词器model: object = None  # 模型dummy_response: str = "My response"def __init__(self, pretrained_model_name_or_path):super().__init__()# GPU方式加载模型self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True)self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True).eval()# CPU方式加载模型# self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)# self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)self.model = self.model.float()@propertydef metadata(self) -> LLMMetadata:"""Get LLM metadata."""# 得到LLM的元数据return LLMMetadata(context_window=self.context_window,num_output=self.num_output,model_name=self.model_name,)# @llm_completion_callback()# def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:#     return CompletionResponse(text=self.dummy_response)## @llm_completion_callback()# def stream_complete(#     self, prompt: str, **kwargs: Any# ) -> CompletionResponseGen:#     response = ""#     for token in self.dummy_response:#         response += token#         yield CompletionResponse(text=response, delta=token)@llm_completion_callback()  # 回调函数def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:# 完成函数print("完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])return CompletionResponse(text=response)@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:# 流式完成函数print("流式完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])for token in response:yield CompletionResponse(text=token, delta=token)

基于本地模型搭建简易RAG

from typing import Anyfrom llama_index.core.llms import (CustomLLM,CompletionResponse,CompletionResponseGen,LLMMetadata,
)
from llama_index.core.llms.callbacks import llm_completion_callback
from transformers import AutoTokenizer, AutoModelForCausalLM
from llama_index.core import Settings,VectorStoreIndex,SimpleDirectoryReader
from llama_index.embeddings.huggingface import HuggingFaceEmbeddingclass GLMCustomLLM(CustomLLM):context_window: int = 8192  # 上下文窗口大小num_output: int = 8000  # 输出的token数量model_name: str = "glm-4-9b-chat"  # 模型名称tokenizer: object = None  # 分词器model: object = None  # 模型dummy_response: str = "My response"def __init__(self, pretrained_model_name_or_path):super().__init__()# GPU方式加载模型self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True)self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cuda", trust_remote_code=True).eval()# CPU方式加载模型# self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)# self.model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path, device_map="cpu", trust_remote_code=True)self.model = self.model.float()@propertydef metadata(self) -> LLMMetadata:"""Get LLM metadata."""# 得到LLM的元数据return LLMMetadata(context_window=self.context_window,num_output=self.num_output,model_name=self.model_name,)# @llm_completion_callback()# def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:#     return CompletionResponse(text=self.dummy_response)## @llm_completion_callback()# def stream_complete(#     self, prompt: str, **kwargs: Any# ) -> CompletionResponseGen:#     response = ""#     for token in self.dummy_response:#         response += token#         yield CompletionResponse(text=response, delta=token)@llm_completion_callback()  # 回调函数def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:# 完成函数print("完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])return CompletionResponse(text=response)@llm_completion_callback()def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:# 流式完成函数print("流式完成函数")inputs = self.tokenizer.encode(prompt, return_tensors='pt').cuda()  # GPU方式# inputs = self.tokenizer.encode(prompt, return_tensors='pt')  # CPU方式outputs = self.model.generate(inputs, max_length=self.num_output)response = self.tokenizer.decode(outputs[0])for token in response:yield CompletionResponse(text=token, delta=token)if __name__ == "__main__":# 定义你的LLMpretrained_model_name_or_path = r'/home/nlp/model/LLM/THUDM/glm-4-9b-chat'embed_model_path = '/home/nlp/model/Embedding/BAAI/bge-m3'Settings.embed_model = HuggingFaceEmbedding(model_name=f"{embed_model_path}",device='cuda')Settings.llm = GLMCustomLLM(pretrained_model_name_or_path)documents = SimpleDirectoryReader(input_dir="home/xxxx/input").load_data()index = VectorStoreIndex.from_documents(documents,)# 查询和打印结果query_engine = index.as_query_engine()response = query_engine.query("萧炎的表妹是谁?")print(response)

ollama 

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.ollama import Ollamadocuments = SimpleDirectoryReader("data").load_data()# bge-base embedding model
Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")# ollama
Settings.llm = Ollama(model="llama3", request_timeout=360.0)index = VectorStoreIndex.from_documents(documents,
)

欢迎大家点赞或收藏

大家的点赞或收藏可以鼓励作者加快更新哟~

参加链接:

LlamaIndex中的CustomLLM(本地加载模型)
llamaIndex 基于GPU加载本地embedding模型
 

官网文档

官网_starter_example_loca

官网_usage_custom

http://www.lryc.cn/news/429790.html

相关文章:

  • Python 异步爬虫:高效数据抓取的现代武器
  • 【数据结构算法经典题目刨析(c语言)】使用数组实现循环队列(图文详解)
  • PTA L1-005 考试座位号
  • 软件测试3333
  • JJJ:结构体定义中常加的后缀:attribute ((packed))
  • 【HTML】DOCTYPE作用
  • STM32学习记录-04-EXTI外部中断
  • Android Studio 动态表格显示效果
  • Python 全栈系列264 使用kafka进行并发处理
  • 【安全靶场】-DC-7
  • 0065__windows开发要看的经典书籍
  • 第133天:内网安全-横向移动域控提权NetLogonADCSPACKDC永恒之蓝
  • 【IoTDB 线上小课 06】列式写入=时序数据写入性能“利器”?
  • 【机器学习】小样本学习的实战技巧:如何在数据稀缺中取得突破
  • 2024.08.14 校招 实习 内推 面经
  • 国产双通道集成电机一体化应用的电机驱动芯片-SS6951A
  • 32 - II. 从上到下打印二叉树 II
  • 總結熱力學_3
  • TypeScript学习笔记1---认识ts与js的异同、ts的所有数据类型详解
  • 华为数通方向HCIP-DataCom H12-821题库(更新单选真题:1-10)
  • 【车载开发系列】单片机烧写的文件
  • pyqt 用lamada关联信号 传递参数 循环
  • adb命令
  • Spring Boot项目热部署
  • Chat App 项目之解析(八)
  • CAAC无人机飞行执照:学习内容与考试流程详解
  • 苹果手机怎么连接蓝牙耳机?3个方案,3秒连接
  • CAD图纸加密软件有哪些?10款超级好用的CAD图纸加密软件推荐
  • 【html+css 绚丽Loading】000011 三元轮回珠
  • 算法学习018 求最短路径 c++算法学习 中小学算法思维学习 比赛算法题解 信奥算法解析