FreeRTOS 时间管理
延时函数介绍
函数 | 描述 |
vTaskDelay() | 相对延时 |
xTaskDelayUntil() | 绝对延时 |
相对延时:指每次延时都是从执行函数vTaskDelay()开始,直到延时指定的时间结束
绝对延时:指将整个任务的运行周期看成一个整体,适用于需要按照一定频率运行的任务
- 为任务主体,也就是任务真正要做的工作
- 是任务函数中调用vTaskDelayUntil()对任务进行延时
- 为其他任务在运行
vTaskDelay()
函数 vTaskDelay() 用于对任务进行延时,延时的时间单位为系统时钟节拍,使用函数,需要的 FreeRTOSConfig.h 文件中将配置项 INCLUDE_vTaskDelay 配置为 1。
void vTaskDelay(const TickType_t xTicksToDelay);
函数用于使任务进入阻塞状态,以实现延时功能。延时的时间以 FreeRTOS 的时钟节拍为单位。 指每次延时都是从执行函数 vTaskDelay() 开始,直到延时指定的时间(参数:滴答值)结束。
参数 xTicksToDelay 用于设置延迟的时钟节拍个数,范围 1- 0xFFFFFFFF。
在使用此函数进行任务延时时,如果传入的参数为 0,那表明不进行任务延时,而是强制进行一次任务切换。
void vTaskDelay( const TickType_t xTicksToDelay )
{BaseType_t xAlreadyYielded = pdFALSE;/* 只有在延时时间大于 0 的时候,才需要进行任务阻塞,* 否则相当于强制进行任务切换,而不阻塞任务*/if( xTicksToDelay > ( TickType_t ) 0U ){configASSERT( uxSchedulerSuspended == 0 );/* 挂起任务调度器 */vTaskSuspendAll();{/* 用于调试,不用理会 */traceTASK_DELAY();/* 将任务添加到阻塞态任务列表中 */prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );}/* 恢复任务调度器运行,调用此函数会返回是否需要进行任务切换*/xAlreadyYielded = xTaskResumeAll();}else{mtCOVERAGE_TEST_MARKER();}/* 根据标志进行任务切换 */if( xAlreadyYielded == pdFALSE ){portYIELD_WITHIN_API();}else{mtCOVERAGE_TEST_MARKER();}
}
xTaskDelayUntil()
函数 xTaskDelayUntil() 用于对任务进行绝对延时,延时的时间单位为系统时钟节拍,使用需要在 FreeRTOSConfig.h 文件中将配置项 INCLUDE_vTaskDelayUntil 配置为 1。
BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,const TickType_t xTimeIncrement );
函数描述:函数 vTaskDelayUntil 用于周期性延迟。 属于绝对延时,指间隔指定的时间(参数:滴答值),执行一次调用 vTaskDelayUntil() 函数的任务。
参数 | 说明 |
pxPreviousWakeTime | 存储任务最后一次解除阻塞的时间 |
xTimeIncrement | 周期性延迟时间 |
返回值 | BaseType_t |
pdTRUE | 操作成功 |
pdFALSE | 操作失败 |
#if ( INCLUDE_xTaskDelayUntil == 1 )
BaseType_t xTaskDelayUntil(TickType_t * const pxPreviousWakeTime, /*上一次阻塞超时时间*/const TickType_t xTimeIncrement ) /*延时的时间*/
{TickType_t xTimeToWake;BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;configASSERT( pxPreviousWakeTime );configASSERT( ( xTimeIncrement > 0U ) );configASSERT( uxSchedulerSuspended == 0 );/* 挂起任务调度器 */vTaskSuspendAll();{const TickType_t xConstTickCount = xTickCount;/* 计算任务下一次阻塞超时的时间,* 这个阻塞超时时间是相对于上一次阻塞超时的时间的*/xTimeToWake = *pxPreviousWakeTime + xTimeIncrement/* 如果在上一次阻塞超时后,* 系统时钟节拍计数器溢出过*/if( xConstTickCount < *pxPreviousWakeTime ){/* 只有在下一次阻塞超时时间也溢出,* 并且下一次阻塞超时时间大于系统时钟节拍计数器的值时,* 需要做相应的溢出处理,否则就好像没有溢出*/if( ( xTimeToWake < *pxPreviousWakeTime ) &&( xTimeToWake > xConstTickCount ) ){xShouldDelay = pdTRUE;/* 标记因为溢出,需要做相应的处理 */}else{mtCOVERAGE_TEST_MARKER();}}else{/* 系统时钟节拍计数器没有溢出,* 但是下一次阻塞超时时间溢出了,* 并且下一次阻塞超时时间大于系统时钟节拍计数器的值时,* 需要做相应的溢出处理*/if( ( xTimeToWake < *pxPreviousWakeTime ) ||( xTimeToWake > xConstTickCount ) ){ xShouldDelay = pdTRUE; /* 标记因为溢出,需要做相应的溢出处理 */}else{mtCOVERAGE_TEST_MARKER();}}/* 更新上一次阻塞超时时间为下一次阻塞超时时间 */*pxPreviousWakeTime = xTimeToWake;/* 根据标记,做相应的溢出处理 */if( xShouldDelay != pdFALSE ){/* 用于调试,不用理会 */traceTASK_DELAY_UNTIL( xTimeToWake );/* 将任务添加到阻塞态任务列表中 */prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount,pdFALSE );}else{mtCOVERAGE_TEST_MARKER();}}/* 恢复任务调度器运行,* 调用此函数会返回是否需要进行任务切换*/xAlreadyYielded = xTaskResumeAll();/* 根据标志进行任务切换 */if( xAlreadyYielded == pdFALSE ){portYIELD_WITHIN_API();}else{mtCOVERAGE_TEST_MARKER();} return xShouldDelay;
}
#endif /* INCLUDE_xTaskDelayUntil */
不知道你们有没有想过为什么是 xTaskDelayUntil() 而不是 vTaskDelayUntil(),我在tasks.c文件中找到
延时函数演示实验
学习 FreeRTOS 相对延时和绝对延时API 函数的使用,并了解其区别
实验设计:
将设计三个任务:start_task、task1、task2
三个任务的功能如下:
- start_task:用来创建其他的2个任务
- task1:用于展示相对延时函数vTaskDelay ( )的使用
- task2:用于展示绝对延时函数vTaskDelayUntil( )的使用
其他部分代码如有需要可参考上一篇博文
FreeRTOS 任务相关API函数
//用于展示相对延时函数vTaskDelay ( )的使用
void task1(void * pvParameters)
{while(1){LED0_TOGGLE();delay_ms(10);vTaskDelay(500);}}//用于展示绝对延时函数vTaskDelayUntil( )的使用
void task2(void * pvParameters)
{TickType_t xLastWakeTime = xTaskGetTickCount();while(1){LED1_TOGGLE(); delay_ms(10);xTaskDelayUntil(&xLastWakeTime,500);}
}
现象
注意:
可能会出现任务一在延时时,任务2在运行,但是在任务1解除延时时候任务2刚好在死延时,因为优先级原因所以任务1运行不了代表任务1不止延时了510ms。