当前位置: 首页 > news >正文

CNN代码实战

CNN的原理

从 DNN 到 CNN
(1)卷积层与汇聚
⚫ 深度神经网络 DNN 中,相邻层的所有神经元之间都有连接,这叫全连接;卷积神经网络 CNN 中,新增了卷积层(Convolution)与汇聚(Pooling)。
⚫ DNN 的全连接层对应 CNN 的卷积层,汇聚是与激活函数类似的附件;单个卷积层的结构是:卷积层-激活函数-(汇聚),其中汇聚可省略。
(2)CNN:专攻多维数据
在深度神经网络 DNN 课程的最后一章,使用 DNN 进行了手写数字的识别。但是,图像至少就有二维,向全连接层输入时,需要多维数据拉平为 1 维数据,这样一来,图像的形状就被忽视了,很多特征是隐藏在空间属性里的,而卷积层可以保持输入数据的维数不变,当输入数据是二维图像时,卷积层会以多维数据的形式接收输入数据,并同样以多维数据的形式输出至下一层

导包

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt

制作数据集

# 制作数据集
# 数据集转换参数
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.MNIST(
root = 'D:/Postgraduate/CNN', # 下载路径
train = True, # 是 train 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
test_Data = datasets.MNIST(
root = 'D:/Postgraduate/CNN', # 下载路径
train = False, # 是 test 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
# 批次加载器
train_loader = DataLoader(train_Data, shuffle=True, batch_size=256)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=256)

训练网络

class CNN(nn.Module):def __init__(self):super(CNN,self).__init__()self.net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),nn.Flatten(),nn.Linear(120, 84), nn.Tanh(),nn.Linear(84, 10)
)def forward(self, x):y = self.net(x)return y
# 创建子类的实例,并搬到 GPU 上
model = CNN().to('cuda:0')
# 训练网络
# 损失函数的选择
loss_fn = nn.CrossEntropyLoss() # 自带 softmax 激活函数
# 优化算法的选择
learning_rate = 0.9 # 设置学习率
optimizer = torch.optim.SGD(model.parameters(),lr = learning_rate,
)
# 训练网络
epochs = 5
losses = [] # 记录损失函数变化的列表
for epoch in range(epochs):for (x, y) in train_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)loss = loss_fn(Pred, y) # 计算损失函数losses.append(loss.item()) # 记录损失函数的变化optimizer.zero_grad() # 清理上一轮滞留的梯度loss.backward() # 一次反向传播optimizer.step() # 优化内部参数
Fig = plt.figure()
plt.plot(range(len(losses)), losses)
plt.show()

测试网络

# 测试网络
correct = 0
total = 0
with torch.no_grad(): # 该局部关闭梯度计算功能for (x, y) in test_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum( (predicted == y) )total += y.size(0)
print(f'测试集精准度: {100*correct/total} %')

使用网络

# 保存网络
torch.save(model, 'CNN.path')
new_model = torch.load('CNN.path')

完整代码

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
import matplotlib.pyplot as plt# 制作数据集
# 数据集转换参数
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(0.1307, 0.3081)
])
# 下载训练集与测试集
train_Data = datasets.MNIST(
root = 'D:/Postgraduate/python_project/CNN', # 下载路径
train = True, # 是 train 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
test_Data = datasets.MNIST(
root = 'D:/Postgraduate/python_project/CNN', # 下载路径
train = False, # 是 test 集
download = True, # 如果该路径没有该数据集,就下载
transform = transform # 数据集转换参数
)
# 批次加载器
train_loader = DataLoader(train_Data, shuffle=True, batch_size=256)
test_loader = DataLoader(test_Data, shuffle=False, batch_size=256)class CNN(nn.Module):def __init__(self):super(CNN,self).__init__()self.net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5, padding=2), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), nn.Tanh(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(16, 120, kernel_size=5), nn.Tanh(),nn.Flatten(),nn.Linear(120, 84), nn.Tanh(),nn.Linear(84, 10)
)def forward(self, x):y = self.net(x)return y
# 创建子类的实例,并搬到 GPU 上
model = CNN().to('cuda:0')
# 训练网络
# 损失函数的选择
loss_fn = nn.CrossEntropyLoss() # 自带 softmax 激活函数
# 优化算法的选择
learning_rate = 0.9 # 设置学习率
optimizer = torch.optim.SGD(model.parameters(),lr = learning_rate,
)
# 训练网络
epochs = 5
losses = [] # 记录损失函数变化的列表
for epoch in range(epochs):for (x, y) in train_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)loss = loss_fn(Pred, y) # 计算损失函数losses.append(loss.item()) # 记录损失函数的变化optimizer.zero_grad() # 清理上一轮滞留的梯度loss.backward() # 一次反向传播optimizer.step() # 优化内部参数
Fig = plt.figure()
plt.plot(range(len(losses)), losses)
plt.show()# 测试网络
correct = 0
total = 0
with torch.no_grad(): # 该局部关闭梯度计算功能for (x, y) in test_loader: # 获取小批次的 x 与 yx, y = x.to('cuda:0'), y.to('cuda:0')Pred = model(x) # 一次前向传播(小批量)_, predicted = torch.max(Pred.data, dim=1)correct += torch.sum( (predicted == y) )total += y.size(0)
print(f'测试集精准度: {100*correct/total} %')# 保存网络
torch.save(model, 'CNN.path')
new_model = torch.load('CNN.path')

运行截图

http://www.lryc.cn/news/426745.html

相关文章:

  • 迁移学习代码复现
  • Elasticsearch(ES)常用命令
  • C/C++ 不定参函数
  • C语言——函数专题
  • springboot打可执行jar包
  • 【SQL】科目种类
  • 【深度学习】【语音】TTS,最新TTS模型概览,扩散模型TTS,MeloTTS、StyleTTS2、Matcha-TTS
  • 【论文笔记】LION: Linear Group RNN for 3D Object Detection in Point Clouds
  • 打造高可用集群的基石:深度解析Keepalived实践与优化
  • Web大学生网页作业成品——环保主题介绍网页网站设计与实现(HTML+CSS)(5个页面)
  • Qt登录窗口设计
  • 探索数据矿藏:我的AI大模型与数据挖掘实战经验分享
  • linux C语言strcat函数及相关函数
  • 使用 sort 进行文本文件处理
  • HarmonyOS笔记4:从云数据库获取数据
  • QT5生成独立运行的exe文件
  • LabVIEW光纤水听器闭环系统
  • Shell——流程控制语句(if、case、for、while等)
  • 【redis的大key问题】
  • HighPoint SSD7749M2:128TB NVMe 存储卡实现28 GB/s高速传输
  • ARM 裸机与 Linux 驱动对比及 Linux 内核入门
  • 0101DNS TCP fallback on UDP query timeout disabled-redission-中间件
  • 位运算
  • MemFire Cloud是否真的可以取代后端
  • 数据结构(邓俊辉)学习笔记】优先级队列 06——完全二叉堆:批量建堆
  • Java | Leetcode Java题解之第344题反转字符串
  • 定制开发AI智能名片O2O商城小程序:基于限量策略与个性化追求的营销创新
  • Spring MVC Controller返回json日期格式配置失效的解决办法
  • 3.Default Constructor的构造操作
  • CSS的:current伪类:精准定位当前活动元素