当前位置: 首页 > news >正文

leetcode50. Pow(x, n),快速幂算法

leetcode50. Pow(x, n),快速幂算法

实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,xn )。

示例 1:
输入:x = 2.00000, n = 10
输出:1024.00000

示例 2:
输入:x = 2.10000, n = 3
输出:9.26100

示例 3:
输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25

目录

  • leetcode50. Pow(x, n),快速幂算法
    • 总体思维导图
  • 快速幂算法详解
    • 算法背景
    • 算法原理
    • 算法步骤
    • 算法优势
    • 应用场景
    • 流程图
    • 具体代码
    • 算法分析
    • 相似题目

总体思维导图

在这里插入图片描述

快速幂算法详解

算法背景

快速幂算法是一种高效计算 x n x^n xn 的方法,特别适用于 n n n 非常大的情况。它基于幂的性质和二进制表示。

算法原理

  1. 二进制表示:任何整数 n n n 都可以用二进制表示。例如, 13 13 13 的二进制表示是 1101 1101 1101
  2. 幂的性质 x n x^n xn 可以分解为 x 2 0 × x 2 1 × x 2 2 × … x^{2^0} \times x^{2^1} \times x^{2^2} \times \ldots x20×x21×x22× 的形式。例如, x 13 x^{13} x13 可以分解为 x 1 × x 4 × x 8 x^{1} \times x^{4} \times x^{8} x1×x4×x8
  3. 位操作:通过检查 n n n 的二进制表示中的每一位,我们可以确定是否需要将对应的 x 2 k x^{2^k} x2k 乘入结果中。

算法步骤

  1. 初始化

    • 设置结果 res 为 1。
    • 将指数 n n n 转换为长整型 nn 以避免在负数时的整数溢出。
  2. 特殊情况处理

    • 如果 x = 1 x = 1 x=1,直接返回 x x x
    • 如果 x = − 1 x = -1 x=1,根据 n n n 的奇偶性返回 x x x − x -x x
    • 如果 n < 0 n < 0 n<0,将 n n nn nn 设为正数,并将 x x x 设为其倒数。
  3. 快速幂计算

    • 使用 while 循环,当 n n > 0 nn > 0 nn>0 时执行。
    • 如果 n n nn nn 的当前最低位为 1(nn & 1),则将 r e s res res 乘以 x x x
    • n n nn nn 右移一位(nn >>= 1),即除以 2。
    • x x x 平方(x = x * x)。
  4. 返回结果

    • n n nn nn 变为 0 时,返回 res

算法优势

  • 时间复杂度降低:传统的幂运算需要 O ( n ) O(n) O(n) 的时间复杂度,而快速幂算法只需要 O ( log ⁡ n ) O(\log n) O(logn)
  • 减少乘法操作:通过跳过不必要的乘法,算法减少了计算量。

应用场景

快速幂算法常用于需要高效率幂运算的场合,例如密码学、大数运算等。

这个算法的关键在于利用了二进制的性质和位操作,从而将一个复杂的幂运算问题转化为一系列更简单的乘法和位移操作。

流程图

开始
特殊情况处理
底数x是否为1
返回1
底数x是否为-1
根据n的奇偶性返回结果
指数n是否小于0
取反n, 取倒数x
初始化res=1
循环处理
检查n是否为奇数
res *= x
n >>= 1
x *= x
n是否大于0
返回res
结束

具体代码

class Solution {
public:double myPow(double x, int n) {double res=1;long long nn=(long long)n;if(x==1.00000){return x;}if(x==-1.00000){if(nn%2==1) return x;else return -x;}if(nn<0) {nn=-nn;x=1/x;}while(nn){if(nn&1) res*=x;nn>>=1;x=x*x;}return res;}
};

算法分析

  • 时间复杂度 O ( log ⁡ n ) O(\log n) O(logn),因为每次循环 n n n 都至少减少一半。
  • 空间复杂度 O ( 1 ) O(1) O(1),只使用了常数空间。
  • 易错点:处理负指数和 x = − 1 x = -1 x=1 的情况时容易出错。
  • 注意点:使用 long long 类型处理大指数,防止整数溢出。

相似题目

下面是一些与快速幂算法相关的题目,您可能会感兴趣:

题目链接
Pow(x, n)LeetCode
Super PowLeetCode
Pow(x, n) IILintCode

这些题目都可以使用快速幂算法来解决。

http://www.lryc.cn/news/423788.html

相关文章:

  • Xinstall神器来袭,轻松搞定CPA推广渠道统计!
  • 011 | efinance分析豆一主连期货
  • 【Python】函数入门(下)
  • git的基本概念和使用原理
  • 手写简化版的vue-router
  • 分享一个基于uni-app的蛋糕商城订购小程序的设计与实现(源码、调试、LW、开题、PPT)
  • Python绘图入门:使用Matplotlib绘制柱状图
  • Qt5编译qmqtt库使用MQTT协议连接华为云IOT完成数据上传与交互
  • mysql速起架子
  • 云动态摘要 2024-08-14
  • Elasticsearch 桶(Bucket)聚合详解及示例
  • Django基础知识
  • 使用 nginx 搭建代理服务器(正向代理 https 网站)指南
  • 深入解析亚马逊数据采集工具选择:Data API/Scrape API/Pangolin采集器
  • 探索Linux多样性:主流发行版及其应用场景
  • CentOS7.6 HAproxy-7层负载均衡集群——实施方案
  • 升级ubuntu22.10到24.04
  • YOLO好像也没那么难?
  • html编写贪吃蛇页面小游戏(可以玩)
  • 【淘宝购买的源码靠谱吗】
  • C++ | list
  • Vue3 v-bind 指令用法
  • 通过Go示例理解函数式编程思维
  • 刷题DAY7
  • 离线数据开发流程小案例-图书馆业务数据
  • GPT-5:未来已来,你准备好了吗
  • 白骑士的Matlab教学高级篇 3.2 并行计算
  • JS中【解构赋值】知识点解读
  • 【Pyspark-驯化】一文搞懂Pyspark中对json数据处理使用技巧:get_json_object
  • 第10章 无持久存储的文件系统 (1)