组合求和2
题目描述:
Given a collection of candidate numbers (candidates
) and a target number (target
), find all unique combinations in candidates
where the candidate numbers sum to target
.
Each number in candidates
may only be used once in the combination.
Note: The solution set must not contain duplicate combinations.
Example 1:
Input: candidates = [10,1,2,7,6,1,5], target = 8 Output: [ [1,1,6], [1,2,5], [1,7], [2,6] ]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5 Output: [ [1,2,2], [5] ]
Constraints:
1 <= candidates.length <= 100
1 <= candidates[i] <= 50
1 <= target <= 30
求解思路:
使用回溯(backtrack)算法。首先将原数组candidates按照取值从小到大排序,然后依次寻找可能求和等于目标值target的子数组。
构建一维动态数组combination存放可能成为候选的子数组,构建二维动态数组存放所有符合要求的子数组res。
回溯算法在子程序中完成,目标是依次遍历已排序的数组candidates中每个值,并判断当前值是否可以作为构成候选子数组的一份子。
(1)如果“目标值-当前求和=0”,也就是候选子数组的求和已经等于目标值,则结束当前回溯子过程,并把满足条件的候选子数组combination存入res中。
(2)依次遍历candidates数组时,当前值如果没有和前一个值重复,并且“目标值>= 当前求和+当前值”,则当前值有可能作为候选项。
从当前位置的下一个位置重新进入回溯子程序,直至找到满足条件的候选子数组,或者“目标值< 当前求和+当前值”,因为数组candidates已经从小到大排序,所以后续值也不可能满足条件了。
每个当前值在结束回溯子程序后,当前值都要从候选项子数组中弹出,也就是每个较小的值(当前求和+当前值<=目标值)都有可能在候选列表中,也有可能不在候选列表中,要兼顾两种情况。
代码:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {sort(candidates.begin(), candidates.end());vector<vector<int>> res;vector<int> combination;backtrack(res, combination, candidates, target, 0);return res;}void backtrack(vector<vector<int>> &res, vector<int> &combination, vector<int> &candidates, int target, int index){if (target ==0){res.push_back(combination);return;}for (int i = index; i<candidates.size()&& target>=candidates[i]; i++){if (i==index || candidates[i] != candidates[i-1]) {// not the same combination againcombination.push_back(candidates[i]);backtrack(res, combination, candidates, target-candidates[i], i+1);combination.pop_back();}}}