当前位置: 首页 > news >正文

Mapreduce_csv_averageCSV文件计算平均值

csv文件求某个平均数据

查询每个部门的平均工资,最后输出

数据处理过程
在这里插入图片描述

employee_noheader.csv(没做关于首行的处理,运行时请自行删除)

EmployeeID,EmployeeName,DepartmentID,Salary  
1,ZhangSan,101,5000
2,LiSi,102,6000
3,WangWu,101,5500
4,ZhaoLiu,103,7000
5,SunQi,102,6500
  1. pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.hadoop</groupId><artifactId>Mapreduce_csv_average</artifactId><version>1.0-SNAPSHOT</version><name>Mapreduce_csv_average</name><description>wunaiieq</description><properties><maven.compiler.source>8</maven.compiler.source><maven.compiler.target>8</maven.compiler.target><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><!--版本控制--><hadoop.version>2.7.3</hadoop.version></properties><dependencies><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-core</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-yarn-api</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-streaming</artifactId><version>${hadoop.version}</version></dependency></dependencies><!--构建配置--><build><plugins><plugin><!--声明--><groupId>org.apache.maven.plugins</groupId><artifactId>maven-assembly-plugin</artifactId><version>3.3.0</version><!--具体配置--><configuration><archive><manifest><!--jar包的执行入口--><mainClass>com.hadoop.Main</mainClass></manifest></archive><descriptorRefs><!--描述符,此处为预定义的,表示创建一个包含项目所有依赖的可执行 JAR 文件;允许自定义生成jar文件内容--><descriptorRef>jar-with-dependencies</descriptorRef></descriptorRefs></configuration><!--执行配置--><executions><execution><!--执行配置ID,可修改--><id>make-assembly</id><!--执行的生命周期--><phase>package</phase><goals><!--执行的目标,single表示创建一个分发包--><goal>single</goal></goals></execution></executions></plugin></plugins></build></project>
  1. Map_1
package com.hadoop;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;public class Map_1 extends Mapper<LongWritable, Text,IntWritable,IntWritable> {@Overrideprotected void map(LongWritable k1, Text v1, Context context)throws IOException, InterruptedException {//处理输入数据,类型转换//以     1,ZhangSan,101,5000  为例String data =v1.toString();//分词操作,csv用","进行分割//一般而言,分词操作大多使用String进行获取,后面可以附跟类型转换String[] words =data.split(",");//下文输出context.write(//K2:部门号输出new IntWritable(Integer.parseInt(words[2])),//K3:工资输出new IntWritable(Integer.parseInt(words[3])));}
}
  1. Reduce_1
package com.hadoop;import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.io.IntWritable;
import java.io.IOException;
public class Reduce_1 extends Reducer<IntWritable,IntWritable,IntWritable,IntWritable>{@Overrideprotected void reduce(IntWritable k3, Iterable<IntWritable> v3, Context context)throws IOException, InterruptedException {//对v3进行求和,计算总额int total=0;int i=0;for (IntWritable v:v3){total+= v.get();i++;}int average=total/i;context.write(k3,new IntWritable(average));}
}
  1. Main
package com.hadoop;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.mapreduce.Job;
import java.io.IOException;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class Main {public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {Job job =  Job.getInstance(new Configuration());job.setJarByClass(Main.class);//mapjob.setMapperClass(Map_1.class);job.setMapOutputKeyClass(IntWritable.class);//k2job.setMapOutputValueClass(IntWritable.class);//v2//reducejob.setReducerClass(Reduce_1.class);job.setOutputKeyClass(IntWritable.class);job.setOutputValueClass(IntWritable.class);//输入和输出FileInputFormat.setInputPaths(job,new Path(args[0]));FileOutputFormat.setOutputPath(job,new Path(args[1]));//执行job.waitForCompletion(true);}
}
  1. 运行
    请自行上传至hdfs中
hadoop jar Mapreduce_average.jar /input/employee_noheader.csv /output/csv_average
  1. 效果
hdfs dfs -cat /output/csv_average/part-r-00000

在这里插入图片描述

http://www.lryc.cn/news/422857.html

相关文章:

  • 将UEC++项目转码成UTF-8
  • 深入探索MySQL C API:使用C语言操作MySQL数据库
  • 武汉流星汇聚:亚马逊助力跨境电商扬帆起航,海外影响力显著提升
  • C语言:设计模式
  • Pandas数据选择的艺术:深入理解loc和iloc
  • <数据集>固定视角监控牧场绵羊识别数据集<目标检测>
  • 浙大数据结构慕课课后题(06-图2 Saving James Bond - Easy Version)(拯救007)
  • 前置(1):npn 和yarn ,pnpm安装依赖都是从那个源安装的啊,有啥优缺点呢
  • 视频融合项目中的平台抉择:6大关键要素助力精准选型
  • 微信小程序项目结构
  • C++unordered_map的用法
  • 代码随想录算法训练营第三十六天| 188.买卖股票的最佳时机IV、309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费
  • Golang | Leetcode Golang题解之第332题重新安排行程
  • Spring Boot - 通过ServletRequestHandledEvent事件实现接口请求的性能监控
  • Docker相关配置记录
  • MySQL中INT(3)与INT(11)
  • Qt 窗口:菜单、工具与状态栏的应用
  • 学习必备好物有哪些?高三开学季好物推荐合集
  • java的分类
  • 基于火山引擎云搜索服务和豆包模型搭建 RAG 推理任务
  • Python 实现 Excel 文件操作的技术性详解
  • Spring WebFlux 实现 SSE 流式回复:类GPT逐字显示回复效果完整指南
  • 成功解决7版本的数据库导入 8版本数据库脚本报错问题
  • 如何让RStudio使用不同版本的R
  • 汽车免拆诊断案例 | 2011 款进口现代新胜达车智能钥匙系统有时失效
  • Count clock
  • 【MySQL】1.MySQL基本操作
  • Qt .qm文件详解
  • 【计算机网络】UDP实战
  • 七、ESP32-S3上使用MicroPython点亮WS2812智能LED灯珠并通过web控制和JS颜色选择器改变灯珠颜色