当前位置: 首页 > news >正文

LeetCode_sql_day15(262.行程与用户)

描述:262. 行程和用户 - 力扣(LeetCode)

取消率 的计算方式如下:(被司机或乘客取消的非禁止用户生成的订单数量) / (非禁止用户生成的订单总数)。

编写解决方案找出 "2013-10-01" 至 "2013-10-03" 期间非禁止用户(乘客和司机都必须未被禁止)的取消率。非禁止用户即 banned 为 No 的用户,禁止用户即 banned 为 Yes 的用户。其中取消率 Cancellation Rate 需要四舍五入保留 两位小数 。

返回结果表中的数据 无顺序要求 。

输入: 
Trips 表:
+----+-----------+-----------+---------+---------------------+------------+
| id | client_id | driver_id | city_id | status              | request_at |
+----+-----------+-----------+---------+---------------------+------------+
| 1  | 1         | 10        | 1       | completed           | 2013-10-01 |
| 2  | 2         | 11        | 1       | cancelled_by_driver | 2013-10-01 |
| 3  | 3         | 12        | 6       | completed           | 2013-10-01 |
| 4  | 4         | 13        | 6       | cancelled_by_client | 2013-10-01 |
| 5  | 1         | 10        | 1       | completed           | 2013-10-02 |
| 6  | 2         | 11        | 6       | completed           | 2013-10-02 |
| 7  | 3         | 12        | 6       | completed           | 2013-10-02 |
| 8  | 2         | 12        | 12      | completed           | 2013-10-03 |
| 9  | 3         | 10        | 12      | completed           | 2013-10-03 |
| 10 | 4         | 13        | 12      | cancelled_by_driver | 2013-10-03 |
+----+-----------+-----------+---------+---------------------+------------+
Users 表:
+----------+--------+--------+
| users_id | banned | role   |
+----------+--------+--------+
| 1        | No     | client |
| 2        | Yes    | client |
| 3        | No     | client |
| 4        | No     | client |
| 10       | No     | driver |
| 11       | No     | driver |
| 12       | No     | driver |
| 13       | No     | driver |
+----------+--------+--------+
输出:
+------------+-------------------+
| Day        | Cancellation Rate |
+------------+-------------------+
| 2013-10-01 | 0.33              |
| 2013-10-02 | 0.00              |
| 2013-10-03 | 0.50              |
+------------+-------------------+
解释:
2013-10-01:- 共有 4 条请求,其中 2 条取消。- 然而,id=2 的请求是由禁止用户(user_id=2)发出的,所以计算时应当忽略它。- 因此,总共有 3 条非禁止请求参与计算,其中 1 条取消。- 取消率为 (1 / 3) = 0.33
2013-10-02:- 共有 3 条请求,其中 0 条取消。- 然而,id=6 的请求是由禁止用户发出的,所以计算时应当忽略它。- 因此,总共有 2 条非禁止请求参与计算,其中 0 条取消。- 取消率为 (0 / 2) = 0.00
2013-10-03:- 共有 3 条请求,其中 1 条取消。- 然而,id=8 的请求是由禁止用户发出的,所以计算时应当忽略它。- 因此,总共有 2 条非禁止请求参与计算,其中 1 条取消。- 取消率为 (1 / 2) = 0.50

数据准备:

Create table If Not Exists Trips (id int, client_id int, driver_id int, city_id int, status ENUM('completed', 'cancelled_by_driver', 'cancelled_by_client'), request_at varchar(50))

Create table If Not Exists Users (users_id int, banned varchar(50), role ENUM('client', 'driver', 'partner'))

Truncate table Trips

insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('1', '1', '10', '1', 'completed', '2013-10-01')

insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('2', '2', '11', '1', 'cancelled_by_driver', '2013-10-01')

insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('3', '3', '12', '6', 'completed', '2013-10-01')

insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('4', '4', '13', '6', 'cancelled_by_client', '2013-10-01')

insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('5', '1', '10', '1', 'completed', '2013-10-02')

insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('6', '2', '11', '6', 'completed', '2013-10-02')

insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('7', '3', '12', '6', 'completed', '2013-10-02')

insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('8', '2', '12', '12', 'completed', '2013-10-03')

insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('9', '3', '10', '12', 'completed', '2013-10-03')

insert into Trips (id, client_id, driver_id, city_id, status, request_at) values ('10', '4', '13', '12', 'cancelled_by_driver', '2013-10-03')

Truncate table Users

insert into Users (users_id, banned, role) values ('1', 'No', 'client')

insert into Users (users_id, banned, role) values ('2', 'Yes', 'client')

insert into Users (users_id, banned, role) values ('3', 'No', 'client')

insert into Users (users_id, banned, role) values ('4', 'No', 'client')

insert into Users (users_id, banned, role) values ('10', 'No', 'driver')

insert into Users (users_id, banned, role) values ('11', 'No', 'driver')

insert into Users (users_id, banned, role) values ('12', 'No', 'driver')

insert into Users (users_id, banned, role) values ('13', 'No', 'driver')

分析:

①观察trip表需要client_id,driver_id,而这两个id在users表中,不妨分解一下users表

分解为只有client_id 数据的表t1 和只有driver_id数据的表t2

select * from users where role = 'client'
select * from users where role = 'driver'

②连接三张表,并进行相应的筛选,找到clent和driver的banned都为no的,以及相应日期的数据

select request_at,t1.users_id uid,t1.banned t1b,t2.users_id did,t2.banned t2b,status
from (select * from users where role = 'client') t1,(select * from users where role = 'driver') t2,trips
where Trips.client_id = t1.users_idand Trips.driver_id = t2.users_idand request_at between '2013-10-01' and '2013-10-03'and t1.banned = 'no'and t2.banned = 'no'

③然后通过对日期分类求出取消率

select request_at,round((count(if(status !='completed',1,null))/(count(1)) ),2)as 'Cancellation Rate'from t1
group by request_at;

代码:

with t1 as (
select request_at,t1.users_id uid,t1.banned t1b,t2.users_id did,t2.banned t2b,status
from (select * from users where role = 'client') t1,(select * from users where role = 'driver') t2,trips
where Trips.client_id = t1.users_idand Trips.driver_id = t2.users_idand request_at between '2013-10-01' and '2013-10-03'and t1.banned = 'no'and t2.banned = 'no')
select request_at,round((count(if(status !='completed',1,null))/(count(1)) ),2)as 'Cancellation Rate'from t1
group by request_at;

总结:

分解users表之后再进行连接会使题目迎刃而解

http://www.lryc.cn/news/421371.html

相关文章:

  • 【MySQL】详解数据库约束、聚合查询和联合查询
  • bug积累
  • 版本控制案例:全球虚拟制片领导者Dimension借助Perforce Helix Core简化多供应商协作,控制访问权限,确保数据资产安全(下)
  • Anaconda配置envs和pcks路径
  • 推荐10个在线搭建框架平台
  • Linux Shell--函数
  • 漏洞复现-CVE-2023-42442:JumpServer未授权访问漏洞
  • 【数据结构之带头双向循环链表的实现】
  • 【docker】docker数据卷与网络部署服务
  • Spring MVC框架学习笔记
  • LeetCode 100道题目和答案(面试必备)(一)
  • OpenGL投影矩阵
  • Linux中的`make`与`Makefile`:项目自动化构建工具
  • GitHub开源项目精选:轻量级预约/预订日历组件,用React和TypeScript构建
  • 闲钱放在哪里?收益稳定且又高!
  • 【Linux】简易线程池项目
  • 基于vue框架的NBA球星管理系统1878g(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。
  • 【docker】Dockerfile练习
  • 数据可视化的魔法:Python Matplotlib库的奇妙之旅
  • Python数据科学的秘密武器:Pandas库的深度解析
  • 云计算实训24——python基本环境搭建、变量和数据类型、数据集合、py脚本
  • 深入了解网络性能监控(NPM):优化网络性能的关键
  • Vue引入使用iconfont字体图标
  • Doc2Vec
  • MES生产过程透明管理,实施掌握生产每个环节
  • Java解析压缩包,并根据指定文件夹上传文件
  • 【HTML】纯前台字符验证码
  • 如何在 Vue.js 项目中动态设置页面标题
  • Eval绕过限制参数限制
  • 计算机网络408考研 2021