当前位置: 首页 > news >正文

高等数学 第九讲 一元函数积分学的应用

1. 一元函数积分学的应用

文章目录

  • 1. 一元函数积分学的应用
  • 1. 几何应用
    • 1.1 用定积分表达和计算平面图形的面积
    • 1.2 用定积分表达和计算旋转体的体积
      • 1.2.1 微分法
      • 1.2.2 二重积分法
      • 1.2.3 古尔丁定理
      • 1.2.4 旋转体的体积公式总结
    • 1.3 用定积分表达和计算函数的平均数
    • 1.4 其他几何应用
      • 1.4.1 "平面上的曲边梯形"的形心坐标公式
      • 1.4.2 平面曲线的弧长
      • 1.4.3 旋转曲面的面积(侧面积)
    • 公式使用小总结
  • 2. 积分等式与积分不等式(待整理)
  • 3.物理应用
    • 3.1 变力沿直线做功
    • 3.2 抽水做功
    • 3.3 静水压力

1. 几何应用

1.1 用定积分表达和计算平面图形的面积

三大体系下的图形,直角坐标系和极坐标系直接计算,参数方程转换为直角坐标系再进行计算。

下面给出平面直角坐标系和极坐标系下两条曲线所围成平面图形的面积:
在这里插入图片描述

(2)的解释说明:
扇形面积,dθ趋近于0,看成90度,阴影部分面积看成三角形 1/2底*高
高是r2,底是弧长,弧长=顶角✖️边长=dθ✖️r2,故 1/2✖️r2dθ *r2=1/2 r22

1.2 用定积分表达和计算旋转体的体积

虽然下面给出了公式,但是在具体做题中,发现用处不大,后续冲刺更新复习中,会删掉多余的公式

1.2.1 微分法

经典的做法,但是只能较为有效解决绕x轴,y轴的旋转体的体积,不太推荐。

1.2.2 二重积分法

方法来源于:武忠祥高等数学辅导讲义,利用二重积分来解决旋转体体积的问题。

核心思想:拿出待求面积内的一个小面积记作dσ,将这个小面积旋转,剪开,发现是一个圆柱体,圆柱体体积=底面积*高,底面积就是dσ,高是没剪开的甜甜圈的周长,2派r,其中这个r是,点(x,y)到旋转直线的距离,有公式。
综上,
v = 底面积 ∗ 高 = ∬ D d σ ∗ 2 π r ( x , y ) = 2 π ∬ D r ( x , y ) d σ v = 底面积*高 = \iint \limits_{D}^{}d\sigma *2\pi r\left(x,y\right) = 2\pi \iint \limits_{D}^{}r\left(x,y\right)d\sigma v=底面积=Ddσ2πr(x,y)=2πDr(x,y)dσ

1.2.3 古尔丁定理

在这里插入图片描述

利用第一个古尔丁定理的结论,我们不难得出,重点在于计算形心计算形心有公式。然后在根据点到直线的距离或者观察法计算形心到转轴的距离。

1.2.4 旋转体的体积公式总结

定积分计算旋转体体积公式:
在这里插入图片描述

(2)的解释说明:
薄壁柱体(壳体),切开展开得到一个长方体,高是|y(x)|,宽是dx,长是圆的周长2派r,r就是x,故是2派x,长方体体积=长宽高=2派x|y(x)|dx

(3)平面曲线绕定直线旋转
在这里插入图片描述

如何使用,就是做差使用,两条曲线围成面积,绕着旋转,就分别求如何作差。

1.3 用定积分表达和计算函数的平均数

在这里插入图片描述

1.4 其他几何应用

1.4.1 "平面上的曲边梯形"的形心坐标公式

在这里插入图片描述

在这里插入图片描述

1.4.2 平面曲线的弧长

三个公式都得背
在这里插入图片描述
关于计算弧长时,积分上下限怎么确定,积分下限必是小的,上限必是大的
在这里插入图片描述

1.4.3 旋转曲面的面积(侧面积)

先记第一个
在这里插入图片描述
在这里插入图片描述

综上可知,弧长和侧面积都得保证上下限从小到大

公式使用小总结

在计算面积,体积,弧长,侧面积时,我们会求直角坐标系下的就行,其他坐标系都可以通过换元法转换为直角坐标系。
注意换元有三换,还有就是直角坐标系下的y’,是对应参数方程的dy/dx,也就是 (dy/dt)/(dx/dt)
极坐标系其实也是参数方程,x=rcosθ,y=rsinθ

2. 积分等式与积分不等式(待整理)

3.物理应用

3.1 变力沿直线做功

在这里插入图片描述

3.2 抽水做功

物理知识补充既公式推导:
抽水做功公式:w=Fh,每一块的h其实就是横坐标,看图,故w=Fx,当前进度:w=Fx
‌浮力公式:ρgv,v是体积,重点在于确定v,当前进度:w=ρgvx
v是水面一层(类似于硬币)的体积,看成圆柱体,圆柱体v=底面积*高,底面积设为A(x),故v=A(x)dx,当前进度:w=ρgA(x)xdx
故总结公式为求积分a到b上的w,a是水面,b是水底
问题的关键在于确定x处水平截面面积A(x),其余的量都是固定的。故拿到题核心在于求A(x)

在这里插入图片描述

3.3 静水压力

物理知识补充既公式推导:
压强公式=压力/横截面面积,故压力=压强横截面面积
横截面面积=长
宽,长是f(x)-g(x),宽是dx
压强=pgh=pgx,故公式得证
求解关键是平板的宽度f(x)-h(x)

在这里插入图片描述

http://www.lryc.cn/news/421244.html

相关文章:

  • django如何更新数据库字段并与数据库保持同步?
  • jenkins插件 SSH Publishers
  • Kafka Client客户端操作详解
  • 【HarmonyOS NEXT星河版开发学习】小型测试案例15-博客列表
  • go-zero中统一返回前端数据格式的几种方式
  • 【向量数据库】Ubuntu编译安装FAISS
  • 制造知识普及(九)--企业内部物料编码(IPN)与制造商物料编码(MPN)
  • 【整数规划】+【0—1规划】解决优化类问题(Matlab代码)
  • Linux下如何使用Curl进行网络请求
  • PostgreSQL 触发器
  • LeetCode——3131.找出与数组相加的整数I
  • 【SpringMVC】详细了解SpringMVC中WEB-INF 目录资源,视图解析器和静态资源放行的使用。
  • 如何学好uni-app
  • C++ QT使用stackwidget实现页面切换(含源码)
  • 打工人上班适合用的蓝牙耳机推荐?几款开放式耳机推荐
  • 一款.NET开发的AI无损放大工具
  • 编程新手必看:彻底理解!与~的取反操作
  • 【LeetCode】54. 螺旋矩阵
  • 计算机毕业设计 奖学金评定管理系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试
  • 【JavaWeb项目】——外卖订餐系统之商家添加餐品、修改餐品、查询热卖餐品、查询出售车、进行发货操作
  • 制作抖音私信卡片 - 一键调起并跳转微信二维码
  • 赋能未来园区:TSINGSEE视频AI智能管理平台如何引领园区管理智慧化转型
  • Linux逻辑卷管理LVM
  • 团队诊断工具TDS
  • DC-5靶机渗透测试
  • 16、电科院FTU检测标准学习笔记-基本性能2
  • MySQL——使用Python操作MySQL
  • Flink的DataStream状态管理
  • Daiqile SQL注入绕过
  • 用Python轻松移除PDF中的注释