当前位置: 首页 > news >正文

Python知识点:使用FastAI进行快速深度学习模型构建

使用FastAI构建深度学习模型非常方便,尤其是对于快速原型开发和实验。以下是一个使用FastAI构建深度学习模型的完整示例,涵盖数据准备、模型训练和评估。

安装依赖

首先,确保你安装了FastAI库和其他必要的库:

pip install fastai

数据准备

我们以CIFAR-10数据集为例,演示如何准备数据。

from fastai.vision.all import *# 下载并加载CIFAR-10数据集
path = untar_data(URLs.CIFAR)
dls = ImageDataLoaders.from_folder(path, valid='test', item_tfms=Resize(224))

构建和训练模型

使用FastAI的高层API快速构建和训练模型。这里我们使用ResNet18作为示例模型。

# 定义模型
learn = vision_learner(dls, resnet18, metrics=accuracy)# 训练模型
learn.fine_tune(1)

评估模型

训练完成后,评估模型性能。

# 评估模型
learn.validate()

完整示例

综合以上步骤,以下是完整的代码示例:

from fastai.vision.all import *# 下载并加载CIFAR-10数据集
path = untar_data(URLs.CIFAR)
dls = ImageDataLoaders.from_folder(path, valid='test', item_tfms=Resize(224))# 定义模型
learn = vision_learner(dls, resnet18, metrics=accuracy)# 训练模型
learn.fine_tune(1)# 评估模型
accuracy_score = learn.validate()
print(f"Validation accuracy: {accuracy_score[1]:.4f}")# 预测新数据
# 假设`new_image_path`是新图像的路径
new_image_path = path/'test'/'airplane'/'0001.png'
img = PILImage.create(new_image_path)
pred, pred_idx, probs = learn.predict(img)
print(f"Prediction: {pred}, Probability: {probs[pred_idx]:.4f}")

自定义数据集

如果你有自己的数据集,可以按照以下方式进行数据准备。

假设你的数据集结构如下:

/path/to/your/datatrain/class1/img1.jpgimg2.jpg...class2/img1.jpgimg2.jpg...valid/class1/img1.jpgimg2.jpg...class2/img1.jpgimg2.jpg...

使用FastAI加载自定义数据集:

from fastai.vision.all import *# 定义数据路径
data_path = Path('/path/to/your/data')# 加载数据
dls = ImageDataLoaders.from_folder(data_path, valid='valid', item_tfms=Resize(224))# 定义模型
learn = vision_learner(dls, resnet18, metrics=accuracy)# 训练模型
learn.fine_tune(1)# 评估模型
accuracy_score = learn.validate()
print(f"Validation accuracy: {accuracy_score[1]:.4f}")

自定义模型

如果你需要使用自定义模型,可以按照以下方式定义和训练。

from fastai.vision.all import *# 定义自定义模型
class MyModel(nn.Module):def __init__(self):super().__init__()self.conv1 = nn.Conv2d(3, 16, 3, padding=1)self.conv2 = nn.Conv2d(16, 32, 3, padding=1)self.fc1 = nn.Linear(32*8*8, 128)self.fc2 = nn.Linear(128, 10)def forward(self, x):x = F.relu(F.max_pool2d(self.conv1(x), 2))x = F.relu(F.max_pool2d(self.conv2(x), 2))x = x.view(x.size(0), -1)x = F.relu(self.fc1(x))x = self.fc2(x)return x# 加载数据
dls = ImageDataLoaders.from_folder(path, valid='test', item_tfms=Resize(224))# 创建Learner
learn = Learner(dls, MyModel(), metrics=accuracy, loss_func=CrossEntropyLossFlat())# 训练模型
learn.fit_one_cycle(5)# 评估模型
accuracy_score = learn.validate()
print(f"Validation accuracy: {accuracy_score[1]:.4f}")

使用FastAI,快速构建、训练和评估深度学习模型变得非常简单。无论是使用预训练模型还是自定义模型,FastAI都提供了强大的工具和灵活的API来满足你的需求。

http://www.lryc.cn/news/420791.html

相关文章:

  • Nginx配置全局https
  • DBAPI 如何对SQL查询出的日期字段进行统一格式转换
  • C:每日一题:字符串左旋
  • 深兰科技荣获2024年度金势奖“AI出海先锋品牌”金奖
  • 服务器启动jar包的时候报”no main manifest attribute“异常(快捷解决)
  • 部分控件的setText文案没有出现在retranslateUi()中,多语言切换不生效问题
  • ubuntu系统下安装LNMP集成环境的详细步骤(保姆级教程)
  • 化繁为简:揭秘中介者模式在Java设计中的魅力与力量
  • Postgresql导入矢量数据
  • 二叉树拙见
  • APT 组织 Kimsuky 瞄准大学研究人员
  • Golang | Leetcode Golang题解之第327题区间和的个数
  • Django5实战
  • 网址管理功能 Webstack
  • 【热工与工程流体力学】第1章 流体及其主要物理性质,流体的粘性,压缩性,流体的质量力和表面力(西北工业大学)
  • TCP和UDP区别,各自的应用场景
  • Java开发工具IDEA
  • VIVADO IP核之DDS直接数字频率合成器使用详解
  • Vue3 插槽 使用笔记
  • Vue2与Vue3响应式原理对比
  • Android系统Android.bp文件详解
  • eNSP 华为静态路由配置
  • Type-C PD芯片:引领智能充电与数据传输的新时代
  • 天气查询 免费
  • VC 与 VS(visual studio) 的对应版本
  • Qt使用lupdate工具生成.ts文件
  • 编程-设计模式 1:工厂方法模式
  • Linux 快速构建LAMP环境
  • 【C/C++】语言基础知识总复习
  • 【漏洞修复】Tomcat中间件漏洞