当前位置: 首页 > news >正文

深度学习基础 - 梯度垂直于等高线的切线

深度学习基础 - 梯度垂直于等高线的切线

flyfish

在这里插入图片描述

梯度

给定一个标量函数 f ( x , y ) f(x, y) f(x,y),它的梯度(gradient)是一个向量,表示为 ∇ f ( x , y ) \nabla f(x, y) f(x,y),定义为: ∇ f ( x , y ) = ( ∂ f ∂ x , ∂ f ∂ y ) \nabla f(x, y) = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) f(x,y)=(xf,yf)

梯度指向函数在该点增加最快的方向,其大小表示函数增加的速率。

等高线

等高线是指在某个平面上连接函数值相同的点的曲线。对于一个标量函数 f ( x , y ) f(x, y) f(x,y),等高线可以表示为 f ( x , y ) = c f(x, y) = c f(x,y)=c,其中 c c c 是常数。

梯度与等高线的关系

梯度垂直于等高线的切线 :对于等高线 f ( x , y ) = c f(x, y) = c f(x,y)=c,在等高线上,函数的值是恒定的。因此,当我们在等高线上移动时,函数 f f f 的变化率为零。这意味着在等高线的切线方向上,函数没有变化,梯度与该方向无关。
梯度的方向是函数值变化最快的方向,而在等高线上的任意方向上,函数值不变,因此梯度方向必然垂直于等高线的切线方向。

几何解释

  1. 等高线
    等高线是一个函数 f ( x , y ) f(x, y) f(x,y) 的等值线,即满足 f ( x , y ) = c f(x, y) = c f(x,y)=c 的所有点的集合。
    在等高线上,函数值保持不变。

  2. 梯度的
    梯度 ∇ f \nabla f f 是一个向量,其方向是函数 f ( x , y ) f(x, y) f(x,y) 在某一点变化最快的方向。梯度向量的大小表示函数在该点变化的速率。

  3. 梯度与等高线
    沿等高线方向,函数值不变,因此沿等高线移动时,函数的变化量为零。
    梯度向量的方向是函数变化最快的方向,而沿等高线方向没有变化,故梯度向量必须垂直于等高线的方向。

向量解释

在二维平面中,可以使用简单的向量代数证明梯度与等高线的切线垂直:

  1. 等高线的方向
    在等高线 f ( x , y ) = c f(x, y) = c f(x,y)=c 上,假设我们选择一个方向向量 t = ( a , b ) \mathbf{t} = (a, b) t=(a,b),这个向量代表等高线的切线方向。

  2. 梯度与切线的关系
    梯度 ∇ f = ( ∂ f ∂ x , ∂ f ∂ y ) \nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) f=(xf,yf)
    梯度 ∇ f \nabla f f 与向量 t \mathbf{t} t 的点积为零。

点积的计算 :
∇ f ⋅ t = ∂ f ∂ x ⋅ a + ∂ f ∂ y ⋅ b \nabla f \cdot \mathbf{t} = \frac{\partial f}{\partial x} \cdot a + \frac{\partial f}{\partial y} \cdot b ft=xfa+yfb

因为在等高线方向上,函数值不变,故此方向的变化量为零:
a ⋅ ∂ f ∂ x + b ⋅ ∂ f ∂ y = 0 a \cdot \frac{\partial f}{\partial x} + b \cdot \frac{\partial f}{\partial y} = 0 axf+byf=0
这表明梯度 ∇ f \nabla f f 与等高线的切线方向向量 t \mathbf{t} t 垂直。

两个向量的点积为零时,它们是相互垂直的,这背后的数学原理来源于欧几里得几何中的向量投影与角度关系。以下是这个结论的详细解释:

向量的点积

两个向量 a \mathbf{a} a b \mathbf{b} b 的点积(内积)定义为: a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ θ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta ab=a∣∣bcosθ

其中:
∣ a ∣ |\mathbf{a}| a ∣ b ∣ |\mathbf{b}| b 分别是向量 a \mathbf{a} a b \mathbf{b} b 的模(长度)。
θ \theta θ 是两个向量之间的夹角。

点积与垂直的关系

当两个向量垂直时,它们之间的夹角 θ = 9 0 ∘ \theta = 90^\circ θ=90。此时, cos ⁡ 9 0 ∘ = 0 \cos 90^\circ = 0 cos90=0,因此点积为: a ⋅ b = ∣ a ∣ ∣ b ∣ cos ⁡ 9 0 ∘ = 0 \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos 90^\circ = 0 ab=a∣∣bcos90=0

再解释

  1. 切线的方向 :假设在等高线上的某一点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0),等高线的切线方向用一个向量 ( d x , d y ) (dx, dy) (dx,dy) 表示。沿着等高线的微小移动满足: f ( x 0 + d x , y 0 + d y ) − f ( x 0 , y 0 ) = 0 f(x_0 + dx, y_0 + dy) - f(x_0, y_0) = 0 f(x0+dx,y0+dy)f(x0,y0)=0
    根据函数的全微分公式,这意味着(链式法则):
    ∂ f ∂ x d x + ∂ f ∂ y d y = 0 \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy = 0 xfdx+yfdy=0

  2. 垂直关系 :由于梯度 ∇ f = ( ∂ f ∂ x , ∂ f ∂ y ) \nabla f = \left( \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) f=(xf,yf),上式表明: ∇ f ⋅ ( d x , d y ) = 0 \nabla f \cdot (dx, dy) = 0 f(dx,dy)=0

这说明梯度向量 ∇ f ( x , y ) \nabla f(x, y) f(x,y) 与切向量 ( d x , d y ) (dx, dy) (dx,dy) 的点积为零,表明它们相互垂直。

梯度指向函数变化最快的方向,而等高线方向是函数不变的方向。

在这里插入图片描述梯度向量与切线垂直,梯度的正方向指示了函数值增加最快的方向,而负方向则指示了函数值减少最快的方向。梯度向量的负方向由红色箭头指示,一条等高线上的切线用绿色显示。

http://www.lryc.cn/news/419601.html

相关文章:

  • py2exe打包
  • Gerrit存在两个未审核提交且这两个提交有冲突时的解决方案
  • 基于单片机的智能风扇设计
  • 【实战】Spring Security Oauth2自定义授权模式接入手机验证
  • Redis数据失效监听
  • 【达梦数据库】-SQL调优思路
  • DispatcherServlet 源码分析
  • 代码随想录算法训练营第十八天| 530.二叉搜索树的最小绝对差 ● 501.二叉搜索树中的众数 ● 236. 二叉树的最近公共祖先
  • 会议室占用的时间(75%用例)D卷(JavaPythonC++Node.jsC语言)
  • C++初阶_1:namespace
  • 低代码开发平台:效率革命还是质量隐忧?
  • 在 Django 表单中传递自定义表单值到视图
  • Android之复制文本(TextView)剪贴板
  • Ubuntu24.04设置国内镜像软件源
  • 分布式与微服务详解
  • Vue设置滚动条自动保持到最底端
  • uniapp创建一个新项目并导入uview-plus框架
  • LabVIEW光电在线测振系统
  • 分布式光伏电站 转化能源 丰富用电结构
  • 环境配置:如何在IntelliJ IDEA中安装和修改JDK版本配置(以Windows为例)
  • Spring AOP 原理——代理模式
  • leetcode 234.回文链表
  • AD中Split Planes 的作用和功能
  • [linux][命令]linux文件操作命令大全
  • 大语言模型 (LLM) 窥探未来
  • WPF DataGrid调试错误总结
  • 【GCC】结合GPT4 延迟梯度学习1:公式推导及理论分析
  • 【Linux】【网络】进程间关系与守护进程
  • 红黑树的插入与删除
  • 联通数科如何基于Apache DolphinScheduler构建DataOps一体化能力平台