当前位置: 首页 > news >正文

一键浪漫的回忆:微软开源的修复工具!!【送源码】

项目介绍

“Bringing-Old-Photos-Back-to-Life”是一款由微软开发的创新软件解决方案,它利用人工智能技术来修复和增强老旧照片的质量。这款工具可以解决老旧照片中常见的问题,如褪色、低分辨率以及物理损坏(如划痕和撕裂)。通过采用先进的图像处理技术,“Bringing-Old-Photos-Back-to-Life”能够显著改善这些照片的整体外观,使其看起来几乎就像是用现代设备拍摄的一样。

特点

它可以自动为黑白照片上色、修正颜色褪变、提高清晰度和锐利度,甚至修复轻微的物理损坏。修复后的结果不仅视觉上令人赏心悦目,而且高度逼真,这对于保存历史和个人记忆来说是一款不可或缺的工具。

开源成就

目前已经取得14.8K Star

主要功能

  • 上色与颜色校正: 提升褪色或黑白照片的颜色。

  • 清晰度与锐利度提升: 增加图片的分辨率和锐利度。

  • 损害修复: 修复照片上的划痕、撕裂及其他物理损伤。

  • 高分辨率支持: 能够处理高分辨率图片以实现细节修复。

安装使用指南

  1. 下载代码库

    • 首先,需要下载项目的代码库到本地环境。

      git clone https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life.git
      
  2. 安装同步批量归一化库

    • 进入models/networks/目录,并下载同步批量归一化PyTorch库。

      cd Bringing-Old-Photos-Back-to-Life/Face_Enhancement/models/networks/
      git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch.git
      cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
      
    • 同样操作需要在Global/detection_models/目录下重复。

      cd ../../../
      cd Global/detection_models/
      git clone https://github.com/vacancy/Synchronized-BatchNorm-PyTorch.git
      cp -rf Synchronized-BatchNorm-PyTorch/sync_batchnorm .
      cd ../../..
      
  3. 下载人脸检测预训练模型

    • Face_Detection/目录下下载人脸检测预训练模型。

      cd Face_Detection/
      wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
      bzip2 -d shape_predictor_68_face_landmarks.dat.bz2
      cd ..
      
  4. 下载并解压预训练模型

    • Face_Enhancement/Global/目录下下载并解压预训练模型。

      cd Face_Enhancement/
      wget https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/releases/download/v1.0/face_checkpoints.zip
      unzip face_checkpoints.zip
      cd ../
      cd Global/
      wget https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life/releases/download/v1.0/global_checkpoints.zip
      unzip global_checkpoints.zip
      cd ../
      
  5. 安装依赖

    • 在项目根目录下安装所需的依赖库。

      pip install -r requirements.txt
      
  6. 如何使用:

    • 对于没有划痕的图片:
      python run.py --input_folder [测试图片文件夹路径] \--output_folder [输出路径] \--GPU 0
      
      对于有划痕的图片:
      python run.py --input_folder [测试图片文件夹路径] \--output_folder [输出路径] \--GPU 0 \--with_scratch
      
      对于带有划痕的高分辨率图片:
      python run.py --input_folder [测试图片文件夹路径] \--output_folder [输出路径] \--GPU 0 \--with_scratch \--HR
      

    • 注意:请将 [测试图片文件夹路径] 和 [输出路径] 替换为你系统中的适当路径。如果你希望使用CPU运行,则可以将GPU选项设置为 -1。    

  7. GUI运行

  • 如果命令行使用不方便,还可以用官方提供的客户端程序,傻瓜式操作,直接运行GUI.py 文件

这个项目让我们意识到,技术的力量不仅仅在于创造新事物,更在于它能够帮助我们修复、保存和珍视那些无法复制的过去。无论是家庭相册中的老照片,还是历史档案中的珍贵影像,Bringing-Old-Photos-Back-to-Life都赋予了它们新的生命。

  ——EOF——

福利:

扫码回复【酒店】可免费领取酒店管理系统源码

http://www.lryc.cn/news/417408.html

相关文章:

  • 力扣-240.搜索二维矩阵(2)
  • Python推导式和生成器表达式
  • 比较支持向量机、AdaBoost、逻辑斯谛回归模型的学习策略与算法
  • Android顶部标题栏自定义,添加按钮
  • Spring Boot 整合 Dubbo3 + Nacos 2.4.0【进阶】+ 踩坑记录
  • 浙江省食品安全管理员题库及答案
  • C++ 几何算法 - 求两条直线交点
  • Linux操作系统简介
  • 【Python机器学习】回归——缩减系数来“理解”数据
  • 组件设计原则
  • 简单搭建vue项目
  • ctfhub Bypass disable_function
  • 【Qt】探索Qt网络编程:构建高效通信应用
  • 【Android Studio】原生应用部署第三方插件(探针)
  • 嵌入式学习之路 15(C语言基础学习——指针操作一维字符型数组)
  • C++ STL专题 list的底层实现
  • 【JavaEE】线程池
  • lvs实战项目-dr模式实现
  • JSONP跨域
  • Linux--shell脚本语言—/—终章
  • 免费代理池是什么,如何使用代理IP进行网络爬虫?
  • CAN直接网络管理(20240805)
  • HTML5+CSS3笔记(Xmind格式):第二天
  • 视频压缩文件太大了怎么缩小?6个视频压缩技巧,速度收藏起来!
  • Python接口自动化测试数据提取分析:Jmespath
  • 特种设备作业叉车司机题库及答案
  • Linux 操作系统速通
  • IIS漏洞大全(附修复方法)
  • HarmonyOS笔记3:从网络数据接口API获取数据
  • Mac 下生成core dump