当前位置: 首页 > news >正文

C++ 几何算法 - 向量点乘,叉乘及其应用

一:点乘介绍

        1. 向量点乘:

        

        2. 向量点乘的性质:

        

       3. 向量点乘公式:

        

        

        

      4. 向量的点乘的属性:

        (1):向量与自身做点乘,会得到向量长度的平方:

        (2):向量长度,为向量与自身点乘后再求平方根:

        (3):向量投影,将a向量投影到向量b上:

        (4):向量夹角:

二:叉乘介绍:

        1. 向量叉乘:

           

        2. 向量叉乘公式:

         

        3. 向量叉乘的属性:

                判断三个向量是否共面:

三:应用1 - 求两直线的交点:

        (1)2D直线方程:

        (2)将直线1带入直线2中:  ,叉乘等于0,意味着两向量共线。

        (3)求交点:

                

四:应用2 - 求三个平面的交点:

        (1):三个平面方程:

                

        (2):三个平面方程,三个未知数,利用克拉默法则求解即可。

三:实现

#ifndef _POINT_H_
#define _POINT_H_#include <iostream>
#include <cmath>class Point2D
{
public:float x, y;Point2D() {}Point2D(float x, float y) : x(x), y(y) {}Point2D &operator+=(const Point2D &t){x += t.x;y += t.y;return *this;}Point2D &operator-=(const Point2D &t){x -= t.x;y -= t.y;return *this;}Point2D &operator*=(float t){x *= t;y *= t;return *this;}Point2D &operator/=(float t){x /= t;y /= t;return *this;}Point2D operator+(const Point2D &t) const{return Point2D(*this) += t;}Point2D operator-(const Point2D &t) const{return Point2D(*this) -= t;}Point2D operator*(float t) const{return Point2D(*this) *= t;}Point2D operator/(float t) const{return Point2D(*this) /= t;}float dot(const Point2D& b) const{return x * b.x + y * b.y;}friend std::ostream &operator<<(std::ostream &out, const Point2D &t){out << '(' << t.x << ',' << t.y << ')';return out;}};Point2D operator*(float a, const Point2D &b)
{return b * a;
}float dot(const Point2D& a, const Point2D& b)
{return a.dot(b);
}float norm(const Point2D& a)
{return dot(a, a);
}double abs(const Point2D& a) {return sqrt(norm(a));
}double proj(const Point2D& a, const Point2D& b)
{return dot(a, b) / abs(b);
}double angle(const Point2D& a, const Point2D& b)
{return acos(dot(a, b) / abs(a) / abs(b));
}float cross(const Point2D& a, const Point2D& b)
{return a.x * b.y - a.y * b.x;
}Point2D intersect(const Point2D& a1, const Point2D& d1, const Point2D& a2, const Point2D& d2)
{return a1 + cross(a2 - a1, d2) / cross(d1, d2) * d1;
}class Point3D: public Point2D
{
public:float z;Point3D() {}Point3D(float x, float y, float z) : Point2D(x, y), z(z) {}Point3D &operator+=(const Point3D &t){x += t.x;y += t.y;z += t.z;return *this;}Point3D &operator-=(const Point3D &t){x -= t.x;y -= t.y;z -= t.z;return *this;}Point3D &operator*=(float t){x *= t;y *= t;z *= t;return *this;}Point3D &operator/=(float t){x /= t;y /= t;z /= t;return *this;}Point3D operator+(const Point3D &t) const{return Point3D(*this) += t;}Point3D operator-(const Point3D &t) const{return Point3D(*this) -= t;}Point3D operator*(float t) const{return Point3D(*this) *= t;}Point3D operator/(float t) const{return Point3D(*this) /= t;}float dot(const Point3D &t) const{return x * t.x + y * t.y + z * t.z;}friend std::ostream &operator<<(std::ostream &out, const Point3D &t){out << '(' << t.x << ',' << t.y << ',' << t.z << ')';return out;}
};Point3D operator*(float a, Point3D b)
{return b * a;
}float dot(const Point3D& a, const Point3D& b) 
{return a.dot(b);
}float norm(const Point3D& a) 
{return dot(a, a);
}double abs(const Point3D& a) {return sqrt(norm(a));
}double proj(const Point3D& a, const Point3D& b)
{return dot(a, b) / abs(b);
}double angle(const Point3D& a, const Point3D& b)
{return acos(dot(a, b) / abs(a) / abs(b));
}Point3D cross(const Point3D& a, const Point3D& b)
{return Point3D(a.y * b.z - a.z * b.y,a.z * b.x - a.x * b.z,a.x * b.y - a.y * b.x);
}float triple(const Point3D& a, const Point3D& b, const Point3D& c) 
{return dot(a, cross(b, c));
}Point3D intersect(const Point3D& a1, const Point3D& n1, const Point3D& a2, const Point3D& n2, const Point3D& a3, const Point3D& n3) 
{Point3D x(n1.x, n2.x, n3.x);Point3D y(n1.y, n2.y, n3.y);Point3D z(n1.z, n2.z, n3.z);Point3D d(dot(a1, n1), dot(a2, n2), dot(a3, n3));return Point3D(triple(d, y, z),triple(x, d, z),triple(x, y, d)) / triple(n1, n2, n3);
}#endif

http://www.lryc.cn/news/416609.html

相关文章:

  • Taro学习记录(具体项目实践)
  • ICML 2024 | 矛与盾的较量!北大提出提示无关数据防御保护算法PID
  • Oracle聚合函数LISTAGG和WM_CONCAT简介
  • 【Unity】多种寻路算法实现 —— BFS,DFS,Dijkstra,A*
  • 十大游戏设计软件:创意实现的利器
  • Pandas高级操作:多级索引、窗口函数、数据透视表等
  • mysql源码编译启动debug
  • 吴恩达机器学习-C1W3L2-逻辑回归之S型函数
  • P-one新增火焰图-为性能测试开启新视野
  • CTF-web基础 TCP/UDP协议
  • sql常用语法总结
  • 实验八 题目描述 从键盘上输入任意一个整数(正负数皆可),判断该整数的绝对值是否为回文数。
  • IsaacLab | Workflow 中 rsl_rl 的 play.py 脚本精读
  • PYTHON专题-(8)我错了该怎么整?
  • 【自然资源】设施农业用地的学习梳理
  • 【秋招笔试】24-07-27-OPPO-秋招笔试题(后端卷)
  • JS 补充内容
  • H5+JS 4096小游戏
  • 常见中间件漏洞(二、WebLogin合集)
  • LeetCode LCR147.最小栈
  • 目标检测的算法有哪些
  • HDU多校-交通管控
  • 【C++】string类
  • Python中各类常用内置转换函数
  • LangChain与JWT:构建安全认证的桥梁
  • ai写作软件哪个好用?怎么帮自己找到好用的ai写作软件?
  • 关于gunicorn+flask+docker模型的高并发部署
  • 35. 搜索插入位置
  • ViT论文详解
  • 常见中间件漏洞(三、Jboss合集)