当前位置: 首页 > news >正文

「队列」实现FIFO队列(先进先出队列|queue)的功能 / 手撕数据结构(C++)

概述

队列,是一种基本的数据结构,也是一种数据适配器。它在底层上以链表方法实现。

队列的显著特点是他的添加元素与删除元素操作:先加入的元素总是被先弹出。

一个队列应该应该是这样的:

          --------------QUEUE-------------————     ————     ————     ————
pop() ←--  T1  ←--  T2  ←--  T3  ←--  T4  ←-- push()————     ————     ————     ————     --------------------------------front()                     back()*注意*-------------------------------→队列的内部是一张由front指向back的链表

Tn代表该元素被加入到队列的次序。

一个队列有以下四种基本行为:

front()表示对队列头元素的访问操作。如得到元素T1。

pop()表示对队列头元素的弹出操作。我们弹出T1

               ---------QUEUE---------————     ————     ————pop() ←--  T2  ←--  T3  ←--  T4  ←-- push()————     ————     ————     -----------------------front()           back()

现在T2成为队头元素。 

back()表示对队列尾元素的访问操作。如当前会得到T4。

push()表示对队列尾部压入新元素。我们压入T5

          --------------QUEUE-------------————     ————     ————     ————
pop() ←--  T2  ←--  T3  ←--  T4  ←--  T5  ←-- push()————     ————     ————     ————     --------------------------------front()                     back()

现在T5成为尾元素。 

接下来我们通过封装queue类,实现队列的一些基本功能 。(Code和测试案例附后)

命名空间

C++有自己的std命名空间下的queue,为了进行区分,封装一个自己的动态数组命名空间custom_queue。

使用namespace关键字封装,使用时可以声明using namespace custom_queu;在作用域内声明,或custom_queue::局部声明。

namespace custom_queue{...
}//作用域内声明
using namespace custom_queue;//局部声明
custom_queue::...

成员变量

template <typename T>泛型,作为数据适配器,他的数据单位应该是任意一种类型,此时暂用T表示,至于T为何物将在实例化时以<>告知。

定义class类queue,封装三个成员变量:queue_node<T>* val_front; queue_node<T>* val_back; size_t val_size;

(size_t 是C/C++标准在stddef.h中定义的(这个头文件通常不需要#include),size_t 类型专门用于表示长度,它是无符号整数。)

我们还要额外定义嵌套类queue_node,它只能被queue类使用,这就实现了结构功能的封装。

queue_node<T>* val_front是队头处的指针。

queue_node<T>* val_back是队尾处的指针。

size_t val_size用于记录当前队列的长度


template<typename T>
class queue {
private:template<typename T>class queue_node {private:...};queue_node<T>* val_front;queue_node<T>* val_back;size_t val_size;
public:...
}

定义class类queue_node,封装两个成员变量:T val; queue_node*next

声明友员类friend class queu(queue为模版类,模版友员类前加泛型声明),这使得queue可以操控queue_node的私有成员,将queue_node的构造函数和析构函数定为私有,这样就只用queue能管理queue_node了。

T val当前节点值。

queue_node*next指向下一个节点

另有构造函数接受一个T elem,创建新节点。

析构函数无须函数体,完全由trie类代管,略去不表。

禁用拷贝构造和重载等于号:默认拷贝构造和等于号进行,指针变量赋值,这存在极大问题(两指针争抢堆上的数据同一块数据),另有深层拷贝解决,略去不表。

template<typename T>
class queue_node {
private:template<typename T>friend class queue;T val;queue_node* next;queue_node(T elem) :val(elem), next(nullptr) {};~queue_node(){};queue_node(const queue_node& another)=delete;queue_node& operator=(const queue_node& another) = delete;
};

创建销毁

提供四种构造。

无参构造:创建空队列。

复制构造:用另一个队列进行深度拷贝。所谓深度拷贝就是以another指针指向的值作为参数创建新指针而不是让两指针指向同一值。让队头获得创新得到的第一个节点,然后以两个临时指针another_val与this_val进行同步,this_val时时构造与another_val指向的值相同的新节点。

最后队尾获得创建得到的最后一个节点。

析构函数:当队列非空,循环进行头结点弹出。后面实现判断空队列行为和弹出行为。

另有重载等于号:作用于复制构造相同。

queue() :val_front(nullptr), val_back(nullptr), val_size(0) {};
queue(const queue& another) :queue() {int len = another.val_size;val_size = len;if (len) {queue_node<T>* this_val=new queue_node<T>(another.val_front->val);const queue_node<T>* another_val = another.val_front->next;val_front = this_val;while (--len) {this_val->next= new queue_node<T>(another_val->val);this_val = this_val->next;another_val = another_val->next;}val_back = this_val;}
}
~queue() {while (!empty())pop();
}
queue& operator=(const queue& another){val_front = val_back = nullptr;int len = another.val_size;val_size = len;if (len) {queue_node<T>* this_val = new queue_node<T>(another.val_front->val);const queue_node<T>* another_val = another.val_front->next;val_front = this_val;while (--len) {this_val->next = new queue_node<T>(another_val->val);this_val = this_val->next;another_val = another_val->next;}val_back = this_val;}return *this;
}

数据控制

获取长度:返回val_size。

判断为空:返回val_size ? false : true。

队尾压入:如果是空队列,队头申请新节点node后,令队尾等于队头。否则在队尾后面申请新节点。

队头弹出:如果是空队列,抛出异常。否则获取当前头结点的next,删除头节点后将next作为头结点。如果队列大小为1,那么删除后应将头尾全部置为nullptr空节点。

size_t size() {return val_size;
}
bool empty() {return val_size ? false : true;
}
void push(const T elem) {if (val_size == 0) {val_front = new queue_node<T>(elem);val_back = val_front;}else {val_back->next = new queue_node<T>(elem);val_back = val_back->next;}val_size++;
}
void pop(){assert(val_size > 0);queue_node<T>* temp = val_front->next;delete val_front;val_front = temp;val_size--;if (!val_size)val_front = val_back= nullptr;
}

数据访问

访问队头:判断无异常后返回队头的常量引用。

访问队尾:判断无异常后返回队尾的常量引用。

我们的queue访问操作不支持接受方进行数据更改。

const T& front() {assert(val_size > 0);return (val_front->val);
}
const T& back() {assert(val_size > 0);return (val_back->val);
}

Code

#pragma once
#include <cassert>
namespace custom_queue {template<typename T>class queue {private:template<typename T>class queue_node {private:template<typename T>friend class queue;T val;queue_node* next;queue_node(T elem) :val(elem), next(nullptr) {};~queue_node(){};queue_node(const queue_node& another)=delete;queue_node& operator=(const queue_node& another) = delete;};queue_node<T>* val_front;queue_node<T>* val_back;size_t val_size;public:queue() :val_front(nullptr), val_back(nullptr), val_size(0) {};queue(const queue& another) :queue() {int len = another.val_size;val_size = len;if (len) {queue_node<T>* this_val=new queue_node<T>(another.val_front->val);const queue_node<T>* another_val = another.val_front->next;val_front = this_val;while (--len) {this_val->next= new queue_node<T>(another_val->val);this_val = this_val->next;another_val = another_val->next;}val_back = this_val;}}~queue() {while (!empty())pop();}queue& operator=(const queue& another){val_front = val_back = nullptr;int len = another.val_size;val_size = len;if (len) {queue_node<T>* this_val = new queue_node<T>(another.val_front->val);const queue_node<T>* another_val = another.val_front->next;val_front = this_val;while (--len) {this_val->next = new queue_node<T>(another_val->val);this_val = this_val->next;another_val = another_val->next;}val_back = this_val;}return *this;}int size() {return val_size;}bool empty() {return val_size ? false : true;}void push(const T elem) {if (val_size == 0) {val_front = new queue_node<T>(elem);val_back = val_front;}else {val_back->next = new queue_node<T>(elem);val_back = val_back->next;}val_size++;}void pop(){assert(val_size > 0);queue_node<T>* temp = val_front->next;delete val_front;val_front = temp;val_size--;if (!val_size)val_front = val_back= nullptr;}const T& front() {assert(val_size > 0);return (val_front->val);}const T& back() {assert(val_size > 0);return (val_back->val);}};
}

测试

#include <iostream>
#include "queue.h"
using namespace std;
int main()
{custom_queue::queue<char>que1;que1.push('a'); que1.push('b'); que1.push('c');custom_queue::queue<char>que2(que1);while (!que1.empty()) {cout << que1.front();que1.pop();}cout << endl;while (!que2.empty()) {cout << que2.front();que2.pop();}cout << endl;que2.push('x');cout <<que2.front()<<' '<< que2.back();cout << endl;return 0;
}

 

http://www.lryc.cn/news/415573.html

相关文章:

  • C++ STL中 `set` 和 `multiset` 简单对比
  • 代码随想录算法训练营Day20 | Leetcode 235 二叉搜索树的最近公共祖先 Leetcode 701 二叉搜索树中的插入操作
  • 第九届世界3D渲染大赛:赛程安排、赛事规则
  • RocketMQ5.0 Consumer Group
  • vulnhub之serial
  • 卷积神经网络(CNN)简单原理与简单代码实现
  • 实时数仓分层架构详解
  • 计算机“八股文”在实际工作中是助力、阻力还是空谈?
  • 新160个crackme - 022-CM_2
  • 在.c和.h 文件里定义数组的区别
  • 使用Step Functions运行AWS Backup时必备的权限要点
  • 强化JS基础水平的10个单行代码来喽!(必看)
  • 大模型学习笔记 - 大纲
  • 苹果电脑可以玩什么小游戏 适合Mac电脑玩的休闲游戏推荐
  • 浅谈KMP算法(c++)
  • 关于C++编程注意点(竞赛)
  • Markdown文本编辑器:Typora for Mac/win 中文版
  • Mysql-窗口函数一
  • Python3 爬虫 数据抓包
  • js强制刷新
  • yolov5 part2
  • Hive3:表操作常用语句-内部表、外部表
  • 【PXE+kickstart】linux网络服务之自动装机
  • vmware ubuntu虚拟机网络联网配置
  • Vue3_对接声网实时音视频_多人视频会议
  • 慧灵科技:创新引领自动化未来
  • 【TiDB 社区智慧合集】TiDB 在核心场景的实战应用
  • JetBrains:XML tag has empty body警告
  • XMLDecoder反序列化
  • C# 高级数据处理:深入解析数据分区 Join 与 GroupJoin 操作的应用与实例演示