当前位置: 首页 > news >正文

MATLAB中dmperm函数用法

目录

语法

说明


        dmperm函数的功能是完成Dulmage-Mendelsohn 分解。

语法

p = dmperm(A)
[p,q,r,s,cc,rr] = dmperm(A)

说明

        如果列 j 与行 i 匹配,p = dmperm(A) 得到的结果为向量 p,这样 p(j) = i,如果列 j 与其不匹配,得到的结果为零。如果 A 是具有完整结构秩的方阵,则 p 是最大匹配行置换并且 A(p,:) 包含非零对角线。A 的结构秩是 sprank(A) = sum(p>0)。

        [p,q,r,s,cc,rr] = dmperm(A)(其中 A 无需是方阵或完整结构秩)计算 A 的 Dulmage-Mendelsohn 分解。p 和 q 分别是行和列置换向量,这样 A(p,q) 包含分块上三角。r 和 s 是索引向量,指示精细分解的块边界。cc 和 rr 是长度为 5 的向量,指示粗略分解的块边界。

C = A(p,q) 拆分为 4×4 组粗略块:

A11 A12 A13 A14
0    0  A23 A24
0    0   0  A34
0    0   0  A44

        其中 A12、A23 和 A34 是具有非零对角线的方阵。A11 的列是不匹配的列,A44 的行是不匹配的行。这些块中的任何块都可以为空。

        在粗略分解中,(i,j)th 块是 C(rr(i):rr(i+1)-1,cc(j):cc(j+1)-1)。如果 A 为方阵并且是非奇异结构,则 A23 = C。也就是说,所有其他粗略块都为 0×0。

对于线性方程组,

  • [A11 A12] 是方程组的欠定部分,它始终是列数多于行数的矩形或为 0×0。

  • A23 是方程组的确定部分,它始终为方形。A23 子矩阵通过精细分解(A23 的强连通分量)进一步细分为分块上三角矩形。

  • [A34; A44] 是方程组的超定部分,它始终是行数比列数多的矩形或为 0×0。

        A 的结构秩是 sprank(A) = rr(4)-1,这是 A 数值秩的上限。在精确算术运算中,概率为 1 的情况下 sprank(A) = rank(full(sprand(A)))。

        C(r(i):r(i+1)-1,s(j):s(j+1)-1) 是精细分解的第 (i,j) 块。(1,1) 块是矩形块 [A11 A12],除非该块为 0×0。(b,b) 块是矩形块 [A34 ; A44],除非该块为 0×0,其中 b = length(r)-1。C(r(i):r(i+1)-1,s(i):s(i+1)-1) 形式的其他所有块是 A23 的对角线块,并且是具有非零对角线的方阵。

提示

  • 如果 A 是可约矩阵,可以将 A 置换为带有不可约对角块的分块上三角矩阵,然后执行分块回代,进而对线性方程组 Ax = b 求解。仅需要对已置换矩阵的对角块进行分解,节省对角线上方块中的填充量和算术运算。

  • ​从图形理论方面看,dmperm 在 A 的偶图中计算最大大小匹配,并且 A(p,q) 的对角块对应于该图形的强 Hall 分量。dmperm 的输出还可用于计算无向图或有向图的连通或强连通分量。有关详细信息,请参阅 Pothen-Fan [1]。​

提示

  • 如果 A 是可约矩阵,可以将 A 置换为带有不可约对角块的分块上三角矩阵,然后执行分块回代,进而对线性方程组 Ax = b 求解。仅需要对已置换矩阵的对角块进行分解,节省对角线上方块中的填充量和算术运算。

  • 从图形理论方面看,dmperm 在 A 的偶图中计算最大大小匹配,并且 A(p,q) 的对角块对应于该图形的强 Hall 分量。dmperm 的输出还可用于计算无向图或有向图的连通或强连通分量。

http://www.lryc.cn/news/414912.html

相关文章:

  • 苹果折叠屏设备:创新设计与技术突破
  • C#加班统计次数
  • 【资治通鉴】“ 将欲取之、必先予之 “ 策略 ① ( 魏桓子 割让土地 | 资治通鉴原文分析 | 道德经、周书、吕氏春秋、六韬 中的相似策略 )
  • Spring5 的日志学习
  • python爬虫实践
  • 【前端面试】七、算法-数组展平
  • Laravel php框架与Yii php 框架的优缺点
  • 使用 addRouteMiddleware 动态添加中间
  • Zookeeper未授权访问漏洞
  • 【JavaEE】定时器
  • 2024带你轻松玩转Parallels Desktop19虚拟机!让你在Mac电脑上运行Windows系统
  • 【算法】递归实现二分查找(优化)以及非递归实现二分查找
  • CDN 是什么?
  • 索引:SpringCloudAlibaba分布式组件全部框架笔记
  • 2024第五届华数杯数学建模竞赛C题思路+代码
  • FFmpeg源码:av_reduce函数分析
  • nginx: [error] open() “/run/nginx.pid“ failed (2: No such file or directory)
  • <数据集>BDD100K人车识别数据集<目标检测>
  • 利用SSE打造极简web聊天室
  • 代码随想录第二十天|动态规划(4)
  • TreeSize:免费的磁盘清理与管理神器,解决C盘爆满的燃眉之急
  • 如何建立自己的技术知识体系
  • JS优化了4个自定义倒计时
  • 模型实战(25)之 基于LoFTR深度学习匹配算法实现图像拼接
  • 计算机毕业设计Python+Spark知识图谱高考志愿推荐系统 高考数据分析 高考可视化 高考大数据 大数据毕业设计
  • 【python】文件
  • 《Attention Is All You Need》核心观点及概念
  • 【中项】系统集成项目管理工程师-第9章 项目管理概论-9.9价值交付系统
  • JS+H5美观的带搜索的博客文章列表(可搜索多个参数)
  • 牛客周赛 Round 54 (c++题解)