当前位置: 首页 > news >正文

谷粒商城实战笔记-127-全文检索-ElasticSearch-整合-测试复杂检索

文章目录

  • 一,使用Elasticsearch的Java RESTHighLevel Client完成复杂的查询请求
    • 1. 创建检索请求 (`SearchRequest`)
    • 2. 构造检索条件 (`SearchSourceBuilder`)
    • 3. 执行检索 (`SearchResponse`)
    • 4. 处理解析结果
    • 5. 获取聚合信息
  • 二,AI时代的效率提升

一,使用Elasticsearch的Java RESTHighLevel Client完成复杂的查询请求

前面es进阶学习中,我们学习过复杂的DSL查询。

POST bank/_search
{"query": {"match": {"address": {"query": "Mill"}}},"aggregations": {"ageAgg": {"terms": {"field": "age","size": 10}},"ageAvg": {"avg": {"field": "age"}},"balanceAvg": {"avg": {"field": "balance"}}}
}

如何使用Java客户端执行复杂的查询呢?

使用Elasticsearch的Java REST High-Level Client执行一个复杂的带有聚合的搜索请求。

1. 创建检索请求 (SearchRequest)

  • 创建 SearchRequest 对象:

    • SearchRequest searchRequest = new SearchRequest();
  • 指定索引:

    • searchRequest.indices("bank");

2. 构造检索条件 (SearchSourceBuilder)

  • 创建 SearchSourceBuilder 对象:

    • SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();
  • 设置查询条件:

    • sourceBuilder.query(QueryBuilders.matchQuery("address", "Mill"));
  • 添加聚合:

    • 按年龄分组的聚合:

      • TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);
      • sourceBuilder.aggregation(ageAgg);
    • 计算平均年龄:

      • AvgAggregationBuilder ageAvg = AggregationBuilders.avg("ageAvg").field("age");
      • sourceBuilder.aggregation(ageAvg);
    • 计算平均薪资:

      • AvgAggregationBuilder balanceAvg = AggregationBuilders.avg("balanceAvg").field("balance");
      • sourceBuilder.aggregation(balanceAvg);
  • 打印检索条件:

    • System.out.println("检索条件:" + sourceBuilder);
  • 将检索条件添加到 SearchRequest:

    • searchRequest.source(sourceBuilder);

3. 执行检索 (SearchResponse)

  • 执行搜索请求:

    • SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);
  • 打印检索结果:

    • System.out.println("检索结果:" + searchResponse);

4. 处理解析结果

  • 获取搜索命中的文档:

    • SearchHits hits = searchResponse.getHits();
    • SearchHit[] searchHits = hits.getHits();
  • 遍历并处理每个文档:

    • for (SearchHit searchHit : searchHits) {String sourceAsString = searchHit.getSourceAsString();Account account = JSON.parseObject(sourceAsString, Account.class);System.out.println(account);
      }
      

5. 获取聚合信息

  • 获取聚合结果:

    • Aggregations aggregations = searchResponse.getAggregations();
  • 处理年龄分布的聚合:

    • Terms ageAgg1 = aggregations.get("ageAgg");
      for (Terms.Bucket bucket : ageAgg1.getBuckets()) {String keyAsString = bucket.getKeyAsString();System.out.println("年龄:" + keyAsString + " ==> " + bucket.getDocCount());
      }
      
  • 处理平均年龄的聚合:

    • Avg ageAvg1 = aggregations.get("ageAvg");
      System.out.println("平均年龄:" + ageAvg1.getValue());
      
  • 处理平均薪资的聚合:

    • Avg balanceAvg1 = aggregations.get("balanceAvg");
      System.out.println("平均薪资:" + balanceAvg1.getValue());
      

完整代码如下:

	/*** 复杂检索*/public void searchData() throws IOException {//1. 创建检索请求SearchRequest searchRequest = new SearchRequest();//1.1)指定索引searchRequest.indices("bank");//1.2)构造检索条件SearchSourceBuilder sourceBuilder = new SearchSourceBuilder();sourceBuilder.query(QueryBuilders.matchQuery("address", "Mill"));//1.2.1)按照年龄分布进行聚合TermsAggregationBuilder ageAgg = AggregationBuilders.terms("ageAgg").field("age").size(10);sourceBuilder.aggregation(ageAgg);//1.2.2)计算平均年龄AvgAggregationBuilder ageAvg = AggregationBuilders.avg("ageAvg").field("age");sourceBuilder.aggregation(ageAvg);//1.2.3)计算平均薪资AvgAggregationBuilder balanceAvg = AggregationBuilders.avg("balanceAvg").field("balance");sourceBuilder.aggregation(balanceAvg);System.out.println("检索条件:" + sourceBuilder);searchRequest.source(sourceBuilder);//2. 执行检索SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);System.out.println("检索结果:" + searchResponse);//3. 将检索结果封装为BeanSearchHits hits = searchResponse.getHits();SearchHit[] searchHits = hits.getHits();for (SearchHit searchHit : searchHits) {String sourceAsString = searchHit.getSourceAsString();Account account = JSON.parseObject(sourceAsString, Account.class);System.out.println(account);}//4. 获取聚合信息Aggregations aggregations = searchResponse.getAggregations();Terms ageAgg1 = aggregations.get("ageAgg");for (Terms.Bucket bucket : ageAgg1.getBuckets()) {String keyAsString = bucket.getKeyAsString();System.out.println("年龄:" + keyAsString + " ==> " + bucket.getDocCount());}Avg ageAvg1 = aggregations.get("ageAvg");System.out.println("平均年龄:" + ageAvg1.getValue());Avg balanceAvg1 = aggregations.get("balanceAvg");System.out.println("平均薪资:" + balanceAvg1.getValue());}

二,AI时代的效率提升

相对于DSL,使用Java客户端来完成复杂的请求,代码是比较复杂不好理解的。

DSL相对清晰、容易理解。

所以,我们可以先根据需求,写好DSL,然后用大模型工具比如通义千问、Kimi、ChatGPT等将DSL转换为Java代码,这样我们就无需逐行编写复杂难懂的Java代码了,只需要在测试过程中进行微调即可。

http://www.lryc.cn/news/414670.html

相关文章:

  • 解锁PyCharm:破解依赖库导入之谜
  • JSON-Viewer插件:json格式查看器
  • HDFS块信息异常,spark无法读取数据
  • TCP协议概述
  • SpringSecurity-3(认证和授权+SpringSecurity入门案例+自定义认证+数据库认证)
  • 英国AI大学排名
  • 渗透测试与高级攻防技术(二)网络安全技术的前沿探讨:渗透测试与高级攻防
  • Windows系统下安装mujoco环境的教程【原创】
  • 【秋招笔试】2024-08-03-科大讯飞秋招笔试题(算法岗)-三语言题解(CPP/Python/Java)
  • 2024华数杯数学建模竞赛选题建议+初步分析
  • 大模型的经典面试问题及答案
  • nodejs环境搭建
  • C#基础:LINQ表达式的单独定义和编译使用
  • 前端面试:八股文系列(一)
  • 设施农业“AutoML“时代:大模型自动调参,让农业算法模型更简单易用
  • LinkedList接口源码解读
  • nohup将代码放到后端运行查看nohup命令
  • MacOS的100个超实用技巧
  • 本地调试指引文档
  • 【C++】一堆数组 冒泡排序
  • [最短路SPFA]--启动!!!!!
  • 大模型是否潜在地进行多跳推理?
  • 人为什么不能长期待在家里?三个原因告诉你答案
  • MATLAB画散点密度图(附代码和测试数据的压缩包)
  • SSH配置命令
  • 谷粒商城实战记录-虚拟机开启密码认证登录
  • C语言程序设计-[1] 基础语法
  • JavaSE第11篇:设计模式
  • 【Unity Shader】切线空间下计算凹凸映射
  • 解决Ubuntu/Kali手动创建的启动器在dock上没有图标,且不能“添加到dock中“的问题