yolov8蒸馏(附代码-免费)
首先蒸馏是什么?
模型蒸馏(Model Distillation)是一种用于在计算机视觉中提高模型性能和效率的技术。在模型蒸馏中,通常存在两个模型,即“教师模型”和“学生模型”。
为什么需要蒸馏?
- 在不增加模型计算量和参数量的情况下提升精度,也即是可以无损提高精度。
- 配合剪枝一起使用,可以尽量达到无损降低模型参数量、计算量,提高FPS的情况下,还能保持模型精度没有下降甚至上升,这是改进网络结构无法达到的高度。
- 论文中的保底手段,因为剪枝和蒸馏的特殊性,其都不会增加参数量和计算量,可以在最后一个点上大幅度增加实验和工作量,因为本身蒸馏也需要做大量实验。
目录
一.代码前提
(1)本文选取的老师模型为yolov8s,学生为剪枝完的yolov8s
(2)本文使用的蒸馏方法包括mgd,cwd
(3)使用前下载必须的包,并且把数据集放在datasets文件夹中,最后替换data.yaml中分类。
二.蒸馏步骤
(1) 训练教师模型
(2) 训练学生模型
(3) 蒸馏训练
三.模型剪枝+蒸馏
(1)约束训练在我上一篇文章中提到,链接:yolov8剪枝
(2)约束训练后,先进行剪枝,使用prune.py。替换模型位置,直接运行。
(3)剪完枝后,效果不一定好,所以使用剪枝完后的模型,继续训练:
一.代码前提
(1)本文选取的老师模型为yolov8s,学生为剪枝完的yolov8s
(2)本文使用的蒸馏方法包括mgd,cwd
(3)使用前下载必须的包,并且把数据集放在datasets文件夹中,最后替换data.yaml中分类。
本文代码已经上传到GitHub,链接:yolov8_蒸馏
使用不妨加个关注,后续还会加入Vit(vision transformer),替换loss等提升精度的方法。
二.蒸馏步骤
(1) 训练教师模型
打开文件中train.py,替换模型文件位置。开始训练,达到理想目标就停止。
import os
from ultralytics import YOLO
import torch
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'def main():model = YOLO("yolov8s.pt")model.train(data="data.yaml", Distillation = None, loss_type='None', amp=False, imgsz=640, epochs=50, batch=20, device=0, workers=0)if __name__ == '__main__':main()
(2) 训练学生模型
打开文件中train.py,替换模型文件位置。我这边使用的是剪枝后的yolov8s模型,具体轻量化剪枝步骤可见本文最后。
import os
from ultralytics import YOLO
import torch
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'def main():model_s = YOLO("./runs/detect/prune/weights/prune.pt")model_s.train(data="data.yaml", Distillation = None, loss_type='None', amp=False, imgsz=640, epochs=50, batch=20, device=0, workers=0)if __name__ == '__main__':main()
(3) 蒸馏训练
打开文件中train_distillation.py,替换老师与学生模型文件位置。两种蒸馏方法可以选择:cwd和mgd。
import os
from ultralytics import YOLO
import torchos.environ['KMP_DUPLICATE_LIB_OK'] = 'True'def main():model_t = YOLO('runs/detect/yolov8s/weights/best.pt') # the teacher modelmodel_s = YOLO('runs/detect/prune/weights/best.pt') # the student model"""Attributes:Distillation: the distillation modelloss_type: mgd, cwdamp: Automatic Mixed Precision"""model_s.train(data="data.yaml", Distillation=model_t.model, loss_type='mgd', amp=False, imgsz=640, epochs=100,batch=20, device=0, workers=0, lr0=0.001)if __name__ == '__main__':main()
现在先不进行训练,打开文件夹yolo_project_distillation\ultralytics\engine\trainer.py
在类FeatureLoss中,函数forward大概162行处打一个断点,进行调试。代码位置:
def forward(self, y_s, y_t):assert len(y_s) == len(y_t)tea_feats = []stu_feats = []for idx, (s, t) in enumerate(zip(y_s, y_t)):# change ---if self.distiller == 'cwd':s = self.align_module[idx](s)s = self.norm[idx](s)else:s = self.norm1[idx](s)t = self.norm[idx](t)tea_feats.append(t)stu_feats.append(s)loss = self.feature_loss(stu_feats, tea_feats)return self.loss_weight * loss
调试运行,查看变量中学生模型y_s和老师模型y_t的张量大小。把通道数记下来,写在类Distillation_loss的
channels_s = [256, 480, 256, 64, 143, 229][-le:]channels_t = [256, 512, 256, 128, 256, 512][-le:]
这边总共有六个,刚好对应模型的六个层的通道数。
替换完成后,应该就可以进行训练了。训练不好的话,再来评论区找我吧。
三.模型剪枝+蒸馏
(1)约束训练在我上一篇文章中提到,链接:yolov8剪枝
(2)约束训练后,先进行剪枝,使用prune.py。替换模型位置,直接运行。
from ultralytics import YOLO
import torch
from ultralytics.nn.modules import Bottleneck, Conv, C2f, SPPF, Detect
from copy import deepcopy# Load a model
yolo = YOLO("./runs/detect/yolov8s/weights/last.pt")
# Save model address
res_dir = "./runs/detect/prune/weights/prune.pt"
# Pruning rate
factor = 0.75yolo.info()
model = yolo.model
ws = []
bs = []for name, m in model.named_modules():if isinstance(m, torch.nn.BatchNorm2d):w = m.weight.abs().detach()b = m.bias.abs().detach()ws.append(w)bs.append(b)# print(name, w.max().item(), w.min().item(), b.max().item(), b.min().item())# keepws = torch.cat(ws)
threshold = torch.sort(ws, descending=True)[0][int(len(ws) * factor)]
print(threshold)def prune_conv(conv1: Conv, conv2: Conv):gamma = conv1.bn.weight.data.detach()beta = conv1.bn.bias.data.detach()keep_idxs = []local_threshold = thresholdwhile len(keep_idxs) < 8:keep_idxs = torch.where(gamma.abs() >= local_threshold)[0]local_threshold = local_threshold * 0.5n = len(keep_idxs)# n = max(int(len(idxs) * 0.8), p)# print(n / len(gamma) * 100)# scale = len(idxs) / nconv1.bn.weight.data = gamma[keep_idxs]conv1.bn.bias.data = beta[keep_idxs]conv1.bn.running_var.data = conv1.bn.running_var.data[keep_idxs]conv1.bn.running_mean.data = conv1.bn.running_mean.data[keep_idxs]conv1.bn.num_features = nconv1.conv.weight.data = conv1.conv.weight.data[keep_idxs]conv1.conv.out_channels = nif conv1.conv.bias is not None:conv1.conv.bias.data = conv1.conv.bias.data[keep_idxs]if not isinstance(conv2, list):conv2 = [conv2]for item in conv2:if item is not None:if isinstance(item, Conv):conv = item.convelse:conv = itemconv.in_channels = nconv.weight.data = conv.weight.data[:, keep_idxs]def prune(m1, m2):if isinstance(m1, C2f): # C2f as a top convm1 = m1.cv2if not isinstance(m2, list): # m2 is just one modulem2 = [m2]for i, item in enumerate(m2):if isinstance(item, C2f) or isinstance(item, SPPF):m2[i] = item.cv1prune_conv(m1, m2)for name, m in model.named_modules():if isinstance(m, Bottleneck):prune_conv(m.cv1, m.cv2)seq = model.model
for i in range(3, 9):if i in [6, 4, 9]: continueprune(seq[i], seq[i + 1])detect: Detect = seq[-1]
last_inputs = [seq[15], seq[18], seq[21]]
colasts = [seq[16], seq[19], None]
for last_input, colast, cv2, cv3 in zip(last_inputs, colasts, detect.cv2, detect.cv3):prune(last_input, [colast, cv2[0], cv3[0]])prune(cv2[0], cv2[1])prune(cv2[1], cv2[2])prune(cv3[0], cv3[1])prune(cv3[1], cv3[2])for name, p in yolo.model.named_parameters():p.requires_grad = True#yolo.val(workers=0) # 剪枝模型进行验证 yolo.val(workers=0)
yolo.info()
# yolo.export(format="onnx") # 导出为onnx文件
# yolo.train(data="./data/data_nc5/data_nc5.yaml", epochs=100) # 剪枝后直接训练微调
ckpt = {'epoch': -1,'best_fitness': None,'model': yolo.ckpt['ema'],'ema': None,'updates': None,'optimizer': None,'train_args': yolo.ckpt["train_args"], # save as dict'date': None,'version': '8.0.142'}torch.save(yolo.ckpt, res_dir)
(3)剪完枝后,效果不一定好,所以使用剪枝完后的模型,继续训练:
import os
from ultralytics import YOLO
import torch
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'def main():# model = YOLO(r'ultralytics/cfg/models/v8/yolov8s.yaml').load('runs/detect/yolov8s/weights/best.pt')model_s = YOLO("./runs/detect/prune/weights/prune.pt")model_s.train(data="data.yaml", Distillation = None, loss_type='None', amp=False, imgsz=640, epochs=50, batch=20, device=0, workers=0)if __name__ == '__main__':main()
------------------------------------------over!!!!!!!!!!!!!!!!!------------------------------