当前位置: 首页 > news >正文

【TVM 教程】在 CUDA 上部署量化模型

更多 TVM 中文文档可访问 →Apache TVM 是一个端到端的深度学习编译框架,适用于 CPU、GPU 和各种机器学习加速芯片。 | Apache TVM 中文站

作者:Wuwei Lin

本文介绍如何用 TVM 自动量化(TVM 的一种量化方式)。有关 TVM 中量化的更多详细信息,参阅 此处。本教程将在 ImageNet 上导入一个 GluonCV 预训练模型到 Relay,量化 Relay 模型,然后执行推理。

import tvm
from tvm import te
from tvm import relay
import mxnet as mx
from tvm.contrib.download import download_testdata
from mxnet import gluon
import logging
import osbatch_size = 1
model_name = "resnet18_v1"
target = "cuda"
dev = tvm.device(target)

准备数据集

以下演示如何为量化准备校准数据集,首先下载 ImageNet 的验证集,并对数据集进行预处理。

calibration_rec = download_testdata("http://data.mxnet.io.s3-website-us-west-1.amazonaws.com/data/val_256_q90.rec","val_256_q90.rec",
)def get_val_data(num_workers=4):mean_rgb = [123.68, 116.779, 103.939]std_rgb = [58.393, 57.12, 57.375]def batch_fn(batch):return batch.data[0].asnumpy(), batch.label[0].asnumpy()img_size = 299 if model_name == "inceptionv3" else 224val_data = mx.io.ImageRecordIter(path_imgrec=calibration_rec,preprocess_threads=num_workers,shuffle=False,batch_size=batch_size,resize=256,data_shape=(3, img_size, img_size),mean_r=mean_rgb[0],mean_g=mean_rgb[1],mean_b=mean_rgb[2],std_r=std_rgb[0],std_g=std_rgb[1],std_b=std_rgb[2],)return val_data, batch_fn

把校准数据集(可迭代对象)定义为 Python 中的生成器对象,本教程仅用几个样本进行校准。

calibration_samples = 10def calibrate_dataset():val_data, batch_fn = get_val_data()val_data.reset()for i, batch in enumerate(val_data):if i * batch_size >= calibration_samples:breakdata, _ = batch_fn(batch)yield {"data": data}

导入模型

用 Relay MxNet 前端从 Gluon 模型集合(model zoo)中导入模型。

def get_model():gluon_model = gluon.model_zoo.vision.get_model(model_name, pretrained=True)img_size = 299 if model_name == "inceptionv3" else 224data_shape = (batch_size, 3, img_size, img_size)mod, params = relay.frontend.from_mxnet(gluon_model, {"data": data_shape})return mod, params

量化模型

量化过程要找到每一层的每个权重和中间特征图(feature map)张量的 scale。

对于权重而言,scales 是根据权重的值直接计算出来的。支持两种模式:power2 和 max。这两种模式都是先找到权重张量内的最大值。在 power2 模式下,最大值向下舍入为 2 的幂。如果权重和中间特征图的 scale 都是 2 的幂,则可以利用移位(bit shifting)进行乘法运算,这使得计算效率更高。在 max 模式下,最大值用作 scale。如果不进行四舍五入,在某些情况下 max 模式可能具有更好的精度。当 scale 不是 2 的幂时,将使用定点乘法。

中间特征图可以通过数据感知量化来找到 scale。数据感知量化将校准数据集作为输入参数,通过最小化量化前后激活分布之间的 KL 散度来计算 scales。或者也可以用预定义的全局 scales,这样可以节省校准时间,但会影响准确性。

def quantize(mod, params, data_aware):if data_aware:with relay.quantize.qconfig(calibrate_mode="kl_divergence", weight_scale="max"):mod = relay.quantize.quantize(mod, params, dataset=calibrate_dataset())else:with relay.quantize.qconfig(calibrate_mode="global_scale", global_scale=8.0):mod = relay.quantize.quantize(mod, params)return mod

运行推理

创建一个 Relay VM 来构建和执行模型。

def run_inference(mod):model = relay.create_executor("vm", mod, dev, target).evaluate()val_data, batch_fn = get_val_data()for i, batch in enumerate(val_data):data, label = batch_fn(batch)prediction = model(data)if i > 10: # 本教程只对几个样本进行推理breakdef main():mod, params = get_model()mod = quantize(mod, params, data_aware=True)run_inference(mod)if __name__ == "__main__":main()

输出结果:

/workspace/python/tvm/driver/build_module.py:268: UserWarning: target_host parameter is going to be deprecated. Please pass in tvm.target.Target(target, host=target_host) instead."target_host parameter is going to be deprecated. "
/workspace/python/tvm/relay/build_module.py:411: DeprecationWarning: Please use input parameter mod (tvm.IRModule) instead of deprecated parameter mod (tvm.relay.function.Function)DeprecationWarning,

脚本总运行时长: (1 分 22.338 秒)

下载 Python 源代码:deploy_quantized.py

下载 Jupyter Notebook:deploy_quantized.ipynb

http://www.lryc.cn/news/413609.html

相关文章:

  • 使用 continue 自定义 AI 编程环境
  • 谷粒商城实战笔记-118-全文检索-ElasticSearch-进阶-aggregations聚合分析
  • ansible,laas,pass,sass
  • 【开源分享】PHP在线提交工单源码|工单管理系统源码 (附源码搭建教程)
  • 【深入探秘Hadoop生态系统】全面解析各组件及其实际应用
  • Flink DataStream API编程入门
  • 案例分享|Alluxio在自动驾驶数据闭环中的应用
  • 为什么选择 Baklib 而不是 Salesforce 进行知识库管理
  • 【C++11】解锁C++11新纪元:深入探索Lambda表达式的奥秘
  • c语言排序(2)
  • vue3+ts+element plus开源框架基础
  • RabbitMQ快速入门(MQ的概念、安装RabbitMQ、在 SpringBoot 项目中集成 RabbitMQ )
  • Linux文件与目录管理命令 ls cp rm mv使用方法
  • KubeSphere 部署的 Kubernetes 集群使用 GlusterFS 存储实战入门
  • elasticsearch源码分析-08Serch查询流程
  • 【协作提效 Go - gin ! swagger】
  • 栈和队列——3.滑动窗口最大值
  • 嵌入式智能手表开发系列文章之开篇
  • 24.8.2数据结构|双链表
  • RabbitMQ高级特性 - 事务消息
  • leetcode:心算挑战
  • docker部署java项目(war包方式)
  • jsp 自定义taglib
  • 从一到无穷大 #32 TimeCloth,云上的快速 Point-in-Time Recovery
  • 时间序列论文1——Forecasting at Scale
  • HDFS常用命令
  • 请问如何做好软件测试工作呢?
  • 单片机开发与Linux开发的区别
  • 【机器学习】回归类算法-相关性分析
  • java基础 之 集合与栈的使用(三)