当前位置: 首页 > news >正文

N4 - Pytorch实现中文文本分类

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

目录

  • 任务描述
  • 步骤
    • 环境设置
    • 数据准备
    • 模型设计
    • 模型训练
    • 模型效果展示
  • 总结与心得体会


任务描述

在上周的任务中,我们使用torchtext下载了托管的英文的AG News数据集 进行了分类任务。本周我们来对中文的自定义数据集来进行分类任务。

自定义数据集的格式是csv格式,我们先用pandas进行读取,创建数据集对象。然后后面的步骤就和上周基本上一致了。

步骤

环境设置

import torch
import warningswarnings.filterwarnings('ignore') # 忽略警告# 创建全局设备对象
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
device

设备对象

数据准备

使用pandas读取数据

import pandas as pd
train_data = pd.read_csv('train.csv', sep='\t', header=None)
train_data.head()

查看前三条数据
可以看到数据有两列,第一列是文字内容,第二列是所属的标签。

接下来编写一个迭代器函数,每次迭代返回一对内容和标签

def custom_data_iter(texts, labels):for x, y in zip(texts, labels):yield x, y
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])

然后创建词典,使用torchtext中的build_vocab_from_iterator工具函数

from torchtext.vocab import build_vocab_from_iterator
import jieba# 使用jieba库来做分词器
tokenizer = jieba.lcut # lcut直接返回列表, cut 返回一个迭代器# 编写一个迭代函数,每次返回一句内容的分词结果
def yield_tokens(data_iter):for text, _ in data_iter: # 每次返回一句内容和对应标签yield tokenizer(text) # 返回该句内容的分词列表# 创建词典
vocab = build_vocab_from_iterator(yield_tokens(train_iter), specials=['<unk>'])
vocab.set_default_index(vocab['<unk>'])# 测试词典
vocab(['我', '想', '看', '和平', '精英', '上', '战神', '必备', '技巧', '的', '游戏', '视频'])

词典结果
获取所有的标签名

label_name = list(set(train_data[1].values[:]))
print(label_name)

标签名列表
编写函数,将内容和标签分别转换成数值

text_pipeline = lambda x: vocab(tokenizer(x))
label_pipeline = lambda x: label_name.index(x)print(text_pipeline("我想看和平精英上战神必备技巧的游戏视频"))
print(label_pipeline('Video-Play'))

转换函数
编写文本的批处理函数,用于数据集与模型之间,将一个批次的文本数据转换为数值,还需要生成EmbeddingBag输入时的offsets参数。

from torch.utils.data import DataLoaderdef collate_batch(batch):label_list, text_list, offsets = [], [], [0]for (_text, _label) in batch:# 标签列表label_list.append(label_pipeline(_label))# 文本列表processed_text = torch.tensor(text_pipeline(_text), dtype=torch.int64)text_list.append(processed_text)# 偏移列表offsets.append(len(processed_text))label_list = torch.tensor(label_list, dtype=torch.int64)text_list = torch.cat(text_list)offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)return text_list.to(device), label_list.to(device), offsets.to(device)dataloader = DataLoader(train_iter, batch_size=8, shuffle=False, collate_fn=collate_batch)

模型设计

和上节一样,一个EmbeddingBag层跟着一个全连接层就可以了

from torch import nnclass TextClassificationModel(nn.Module):# 参数随后设置def __init__(self, vocab_size, embed_dim, num_classes):super().__init__()self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=False)self.fc = nn.Linear(embed_dim, num_classes)self.init_weights()# 自定义的权重初始化操作def init_weights(self):initrange = 0.5self.embedding.weight.data.uniform_(-initrange, initrange)self.fc.weight.data.uniform_(-initrange, initrange)self.fc.bias.data.zero_()# 向前传播def forward(self, text, offsets):embedded = self.embedding(text, offsets)return self.fc(embedded)

创建模型对象

num_classes = len(label_name) # 分类数量
vocab_size = len(vocab) # 词典大小
embedding_size = 64 # 嵌入向量的维度
model = TextClassificationModel(vocab_size, embedding_size, num_classes).to(device)
model

模型结构
可以看到,这个模型简单的很。

模型训练

首先编写训练和评估函数

def train(dataloader):model.train()total_acc, train_loss, total_count = 0, 0, 0log_interval = 50start_time = time.time()for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)optimizer.zero_grad()loss = criterion(predicted_label, label)loss.backward()nn.utils.clip_grad_norm_(model.parameters(), 0.1) #梯度裁剪optimizer.step()total_acc += (predicted_label.argmax(1) == label).sum().item()train_loss += loss.item()total_count += label.size(0)if idx % log_interval == 0 and idx > 0:elapsed = time.time() - start_timeprint('| epoch {:1d} | {:4d}/{:4d} batches ''| train_acc {:4.3f} train_loss {:4.5f}'.format(epoch, idx, len(dataloader), total_acc/total_count, train_loss, total_count))total_acc, train_loss, total_count = 0, 0, 0start_time = time.time()def evaluate(dataloader):model.eval()total_acc, train_loss, total_count = 0, 0, 0with torch.no_grad():for idx, (text, label, offsets) in enumerate(dataloader):predicted_label = model(text, offsets)loss = criterion(predicted_label, label)total_acc += (predicted_label.argmax(1) == label).sum().item()train_loss += loss.item()total_count += label.size(0)return total_acc/total_count, train_loss/total_count

开始训练

from torch.utils.data import random_split
from torchtext.data.functional import to_map_style_dataset# 迭代次数
EPOCHS = 20
# 学习率
LR = 5
# 批次大小
BATCH_SIZE = 64criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=LR)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.1)total_accu = None
train_iter = custom_data_iter(train_data[0].values[:], train_data[1].values[:])
train_dataset = to_map_style_dataset(train_iter)train_size = int(len(train_dataset)*0.8)
split_train_, split_valid_ = random_split(train_dataset, [train_size, len(train_dataset) - train_size])train_dataloader = DataLoader(split_train_, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)
valid_dataloader = DataLoader(split_valid_, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_batch)for epoch in range(1, EPOCHS+1):epoch_start_time = time.time()train(train_dataloader)val_acc, val_loss = evaluate(valid_dataloader)lr = optimizer.state_dict()['param_groups'][0]['lr']if total_accu is not None and total_accu > val_acc:scheduler.step()else:total_accu = val_accprint('-'*69)print('| epoch {:1d} | time: {:4.2f}s | ''valid_acc {:4.3f} valid_loss {:4.3f} | lr {:4.6f}'.format(epoch, time.time() - epoch_start_time, val_acc, val_loss, lr))print('-'*69)

训练过程
训练结束后打印一下模型的准确度

model = model.to(device)
test_acc, test_loss = evaluate(valid_dataloader)
print('模型准确率为: {:5.4f}'.format(test_acc))

模型准确率

模型效果展示

自己写一句话让模型跑一下看看效果

def predict(text, text_pipeline):with torch.no_grad():text = torch.tensor(text_pipeline(text))output = model(text, torch.tensor([0]))return output.argmax(1).item()ex_text_str = '不要让一个男人听懂《水星记》'# 切换成CPU推理
model = model.to('cpu')
print('文本的分类是: %s' % label_name[predict(ex_text_str, text_pipeline)])

测试结果

总结与心得体会

通过测试,发现这个模型的效果还是不错的。大部分的句子可以给出正确的分类。和上节相比,中文数据集的文本分类任务和英文数据集的文本分类主要差异在tokenizer(分词器)上。英文的分词非常简单,英文的词之间天然有间隔,所以可以直接使用标点和空格来分割。中文就不太一样,中文需要一个好的断句工具才行,jieba库就是这么一个工具。在大部分的中文自然语言处理任务中,都可以看到它的身影。我在想是不是可以直接使用深度学习来进行分词,来达到更好的效果,或者直接使用大语言模型,经过Prompt直接变成分词工具来使用(只不过成本太高了),希望有时间可以尝试一下。

http://www.lryc.cn/news/412955.html

相关文章:

  • centos 如何安装sox音视频处理工具
  • Java语言程序设计——篇十一(2)
  • Linux 应急响应靶场练习 1
  • AWS-Lambda的使用
  • python3.12 搭建MinerU 环境遇到的问题解决
  • 基于SpringBoot+Vue的流浪猫狗救助救援网站(带1w+文档)
  • 56_AOP
  • 安装了h5py,使用报错ImportError: DLL load failed while importing _errors
  • BootStrap前端面试常见问题
  • 在linux运维中为什么第一道防线是云防火墙,而不是waf
  • 2022年中国高校计算机大赛-团队程序设计天梯赛(GPLT)上海理工大学校内选拔赛
  • 多语言海外AEON抢单可连单加额外单源码,java版多语言抢单系统
  • 文件上传——springboot大文件分片多线程上传功能,前端显示弹出上传进度框
  • 每日学术速递8.2
  • SAP-PLM创建物料主数据接口
  • 超声波眼镜清洗机哪个品牌好?四款高性能超声波清洗机测评剖析
  • 卸载Windows软件的正确姿势,你做对了吗?
  • WEB前端14-Element UI(学生查询表案例/模糊查询/分页查询)
  • 使用swiftui自定义圆形进度条实现loading
  • C# 设计模式之抽象工厂模式
  • Javascript前端面试基础(八)
  • R 语言学习教程,从入门到精通,R的安装与环境的配置(2)
  • Python批量下载音乐功能
  • 用 Bytebase 实现批量、多环境、多租户数据库的丝滑变更
  • java之方法引用 —— ::
  • 「测试线排查的一些经验-上篇」 后端工程师
  • AOSP12_BatteryStats统计电池数据信息
  • 【Android Studio】UI 布局
  • 虚拟机Windows server忘记密码解决方法
  • 【香橙派系列教程】(六)嵌入式SQLite数据库