当前位置: 首页 > news >正文

【算法】退火算法 Simulated Annealing

退火算法(Simulated Annealing, SA)是一种基于热力学模拟的优化算法,用于求解全局优化问题。它通过模拟物理退火过程来寻找全局最优解。以下是退火算法的基本原理和步骤:

一、基本原理

退火算法的灵感来源于金属在高温下缓慢冷却至低温的过程,这一过程中,金属原子逐渐排列成能量最低的晶格结构。类似地,退火算法通过模拟这一过程,在解空间中逐渐收敛到全局最优解。

二、算法步骤

  1. 初始解与温度设定

    • 随机生成一个初始解。
    • 设定初始温度 T 。
  2. 循环过程

    • 在当前解的邻域内随机生成一个新解。
    • 计算新解与当前解的目标函数值差异ΔE。
    • 如果 ΔE≤0,接受新解(新解更优)。
    • 如果 ΔE>0,以概率 P=exp(−ΔE/T) 接受新解(防止陷入局部最优)。
    • 逐步降低温度 T(根据某个降温函数,如T=T×α,其中 α 为冷却速率,通常 0.8≤α≤0.99)。
  3. 终止条件

    • 当温度 T 低于某一阈值时,停止循环。
    • 或者达到预设的最大迭代次数时,停止循环。
伪代码
function SimulatedAnnealing(InitialSolution, InitialTemperature, CoolingRate, StoppingTemperature):currentSolution = InitialSolutioncurrentTemperature = InitialTemperaturewhile currentTemperature > StoppingTemperature:newSolution = GenerateNeighbor(currentSolution)deltaE = Evaluate(newSolution) - Evaluate(currentSolution)if deltaE < 0:currentSolution = newSolutionelse if exp(-deltaE / currentTemperature) > random():currentSolution = newSolutioncurrentTemperature = currentTemperature * CoolingRatereturn currentSolution

三、应用领域

退火算法在许多领域得到了广泛应用,包括但不限于:

  • 组合优化问题,如旅行商问题(TSP)。
  • 连续优化问题,如函数最优化。
  • 工程设计优化,如电路设计、结构优化等。
应用举例:旅行商问题(Traveling Salesman Problem, TSP)

旅行商问题是经典的组合优化问题,描述的是一名旅行商需要访问若干城市并返回出发城市,要求访问每个城市一次且总距离最短。

问题描述

给定若干城市和城市间的距离矩阵,找到一个访问所有城市的最短路径。

退火算法求解TSP步骤
  1. 初始解与温度设定

    • 随机生成一个初始路径作为初始解。
    • 设定初始温度 T 和降温速率 α。
  2. 生成邻域解

    • 在当前路径中随机交换两个城市的位置,生成一个新路径。
  3. 目标函数

    • 计算路径的总距离。
  4. 接受新解的准则

    • 根据退火算法的准则接受或拒绝新解。
import random
import mathdef simulated_annealing(dist_matrix, initial_temp, cooling_rate, stopping_temp):def total_distance(path):return sum(dist_matrix[path[i]][path[i+1]] for i in range(len(path) - 1)) + dist_matrix[path[-1]][path[0]]def swap_two_cities(path):new_path = path[:]i, j = random.sample(range(len(path)), 2)new_path[i], new_path[j] = new_path[j], new_path[i]return new_pathcurrent_solution = list(range(len(dist_matrix)))random.shuffle(current_solution)current_distance = total_distance(current_solution)current_temp = initial_tempbest_solution = current_solution[:]best_distance = current_distancewhile current_temp > stopping_temp:new_solution = swap_two_cities(current_solution)new_distance = total_distance(new_solution)delta_distance = new_distance - current_distanceif delta_distance < 0 or math.exp(-delta_distance / current_temp) > random.random():current_solution = new_solutioncurrent_distance = new_distanceif new_distance < best_distance:best_solution = new_solutionbest_distance = new_distancecurrent_temp *= cooling_ratereturn best_solution, best_distance# 示例距离矩阵
distance_matrix = [[0, 10, 15, 20],[10, 0, 35, 25],[15, 35, 0, 30],[20, 25, 30, 0]
]initial_temperature = 1000
cooling_rate = 0.95
stopping_temperature = 0.01best_path, best_path_distance = simulated_annealing(distance_matrix, initial_temperature, cooling_rate, stopping_temperature)print("最短路径:", best_path)
print("最短路径距离:", best_path_distance)
解释
  1. total_distance: 计算路径的总距离。
  2. swap_two_cities: 在路径中随机交换两个城市的位置,生成一个新路径。
  3. simulated_annealing: 退火算法的主函数,接受距离矩阵、初始温度、冷却速率和停止温度作为参数。
  4. distance_matrix: 一个示例距离矩阵,定义了各个城市之间的距离。
  5. initial_temperature, cooling_rate, stopping_temperature: 退火算法的参数。

运行此代码将输出最短路径及其对应的总距离。

结果示例
最短路径: [0, 2, 3, 1]
最短路径距离: 80

四、优缺点

优点

  • 能够逃避局部最优,找到全局最优解。
  • 适用于各种复杂优化问题。
  • 实现相对简单,参数可调节性强。

缺点

  • 计算量较大,尤其在早期迭代阶段。
  • 参数设置(初始温度、冷却速率、停止温度等)对算法性能影响较大,需要实验调整。

总之,退火算法通过模拟物理退火过程,有效地解决了许多复杂的全局优化问题,是一种通用且强大的优化算法。

http://www.lryc.cn/news/412877.html

相关文章:

  • 深入理解 Git `git add -p` 命令中的交互选项
  • HTML JavaScript 闪光涟漪
  • FastAPI之Depends
  • AttributeError: module ‘jwt‘ has no attribute ‘decode‘解决方案
  • C++——C++11
  • day12 多线程
  • DeferredResult 是如何实现异步处理请求的
  • VUE3——001(03)、开发环境配置(node.js/mvn/java/ngix/tomact/vue3)
  • TCP/IP_TCP协议
  • 鸿蒙应用框架开发【简单时钟】 UI框架
  • MySQL是如何实现数据排序的
  • 【测试架构师修炼之道】读书笔记
  • C++ Functor仿函数
  • 【EI会议征稿通知】第五届大数据、人工智能与软件工程国际研讨会(ICBASE 2024)
  • 微信小程序多端框架实现app内自动升级
  • C# Log4Net应用
  • pytest8.x版本 中文使用文档-------32.示例:使用自定义目录收集器
  • c语言第七天笔记
  • 软件测试经理工作日常随记【8】-UI自动化_加密接口的传输
  • 基于FPGA的出租车计费系统设计---第一版--郝旭帅电子设计团队
  • 商汤联合建工社共同打造“住建领域法规标准知识大模型”
  • 基于STM32的智能交通监控系统教程
  • Git和TortoiseGit的安装与使用
  • 改进YOLOv5:加入非对称卷积块ACNet,加强CNN 的内核骨架,包含VOC对比实验
  • 论文解读(12)-Transfer Learning
  • 力扣高频SQL 50题(基础版)第三十八题
  • 大模型下的视频理解video understanding
  • 【网络安全】CR/LF注入+Race Condition绕过MFA
  • 深度学习入门——卷积神经网络
  • 快团团供货大大团长帮卖团长如何线上结算和支付货款?