当前位置: 首页 > news >正文

常用排序算法的实现与介绍

常用排序算法的实现与介绍

在这里插入图片描述

在计算机科学中,排序算法是非常基础且重要的一类算法。本文将通过C语言代码实现,介绍几种常见的排序算法,包括冒泡排序、选择排序、插入排序和快速排序。以下是这些排序算法的具体实现和简要介绍。

1. 冒泡排序(Bubble Sort)

冒泡排序是一种简单的排序算法,它重复地走访要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。这个过程会重复进行直到没有元素需要交换为止。

void bupsort(TYPE *arr, size_t len) {bool flag = true; // 标记是否发生交换for (size_t i = len - 1; i > 0 && flag; i--) {flag = false;for (size_t j = 0; j < i; j++) {if (arr[j] > arr[j + 1]) {swap(&arr[j], &arr[j + 1]);flag = true; // 发生交换}}}printf("%s\n", __func__);
}
2. 选择排序(Selection Sort)

选择排序是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

void select_sort(TYPE *arr, size_t len) {for (size_t i = 0; i < len - 1; i++) {size_t min_index = i;for (size_t j = i + 1; j < len; j++) {if (arr[j] < arr[min_index]) {min_index = j;}}if (min_index != i) {swap(&arr[i], &arr[min_index]);}}printf("%s\n", __func__);
}
3. 插入排序(Insertion Sort)

插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

void insert_sort(TYPE *arr, size_t len) {for (size_t i = 1, j = 0; i < len; i++) {TYPE key = arr[i];for (j = i - 1; j >= 0 && arr[j] > key; j--) {arr[j + 1] = arr[j];}arr[j + 1] = key;}printf("%s\n", __func__);
}
4. 快速排序(Quick Sort)

快速排序是一种分治法的排序算法。它通过选择一个基准元素,将待排序数组分割成两部分,递归地排序两个子数组。

// 处理分区逻辑的函数
int _Qsort(int *arr, int low, int high) {int pivot = arr[high];int index = low - 1;for (int i = low; i < high; i++) {if (arr[i] < pivot) {index++;swap(&arr[i], &arr[index]);}}swap(&arr[index + 1], &arr[high]);return index + 1;
}// 递归调用函数
void _Qsort_recursive(int *arr, int low, int high) {if (low < high) {int pi = _Qsort(arr, low, high);_Qsort_recursive(arr, low, pi - 1);_Qsort_recursive(arr, pi + 1, high);}
}// 公共接口函数
void Qsort(int *arr, size_t len) {if (arr != NULL && len > 0) {_Qsort_recursive(arr, 0, len - 1);}printf("%s\n", __func__);
}
5.希尔排序(shell sort)
//希尔排序
void shell_sort(TYPE *arr, size_t len) 
{for(int gap = len / 2; gap > 0; gap /= 2){for(int i = gap,j=0; i < len; i++){TYPE key = arr[i];for(j = i; j-gap >= 0 && arr[j-gap] > key; j -= gap){arr[j] = arr[j-gap];}if(i != j)arr[j] = key;}}
printf("%s\n",__func__);
}
主函数和测试

在主函数中,我们使用一个函数数组分别调用以上几种排序算法,并对随机生成的数组进行排序。

int main() {TYPE arr[LEN];sort_func sorts[] = {bupsort, Qsort, select_sort, insert_sort};for (int i = 0; i < sizeof(sorts) / sizeof(sorts[0]); i++) {for (int j = 0; j < LEN; j++) {arr[j] = rand() % 100; // 填充数组随机值}printf("排序前: ");show_arr(arr, LEN);sorts[i](arr, LEN); // 调用排序函数printf("排序后: ");show_arr(arr, LEN);printf("==========================\n");printf("\n");}return 0;
}

在这个例子中,我们展示了如何使用C语言实现几种常见的排序算法,并通过函数指针数组动态调用不同的排序函数。通过这样的实现方式,可以方便地扩展和测试不同的排序算法。希望本文能帮助读者更好地理解和掌握这些基础的排序算法。

完整代码:

#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#include<stdbool.h>
#define TYPE int
#define LEN 15void swap(int *a, int *b) 
{int temp = *a;*a = *b;*b = temp;
}
void show_arr(TYPE *arr,size_t len)
{for(size_t i=0;i<len;i++){printf("%d ",arr[i]);}printf("\n");
}
typedef void (*sort_func)(TYPE *arr,size_t len);// 排序函数类型定义//冒泡排序
void bupsort(TYPE *arr,size_t len)
{bool flag=true;// 标记是否发生交换for(size_t i=len-1;i>0&&flag;i--)//发生过交换才继续{flag=false;// 标记是否发生交换for(size_t j=0;j<i;j++){if(arr[j]>arr[j+1]){swap(&arr[j],&arr[j+1]);flag=true;// 发生交换}}}printf("%s\n",__func__);
}//选择排序
void select_sort(TYPE *arr, size_t len) {for (size_t i = 0; i < len - 1; i++) {size_t min_index = i;for (size_t j = i + 1; j < len; j++) {if (arr[j] < arr[min_index]) {min_index = j;}}if (min_index != i) {swap(&arr[i], &arr[min_index]);}}printf("%s\n",__func__);
}//插入排序
void insert_sort(TYPE *arr, size_t len) 
{for (size_t i = 1,j=0; i < len; i++) {TYPE key = arr[i];for( j = i - 1; j >= 0 && arr[j] > key; j--){arr[j+1] = arr[j];}arr[j+1] = key;}printf("%s\n",__func__);
}//快速排序
// 处理分区逻辑的函数
int _Qsort(int *arr, int low, int high) {int pivot = arr[high]; // 最后一个元素作为基准int index = low - 1; // 记录小于基准元素的位置for (int i = low; i < high; i++) {if (arr[i] < pivot) {index++;swap(&arr[i], &arr[index]); // 将小于基准的元素移到左边}}swap(&arr[index + 1], &arr[high]); // 将基准元素放到中间return index + 1;
}// 递归调用函数
void _Qsort_recursive(int *arr, int low, int high) {if (low < high) {int pi = _Qsort(arr, low, high);_Qsort_recursive(arr, low, pi - 1); // 排序左半部分_Qsort_recursive(arr, pi + 1, high); // 排序右半部分}
}// 公共接口函数
void Qsort(int *arr, size_t len) {if (arr != NULL && len > 0) {_Qsort_recursive(arr, 0, len - 1);}printf("%s\n",__func__);
}
int main() {TYPE arr[LEN];sort_func sorts[] = {bupsort, Qsort, select_sort , insert_sort};// 排序函数数组for (int i = 0; i < sizeof(sorts) / sizeof(sorts[0]); i++) {for (int j = 0; j < LEN; j++) {arr[j] = rand() % 100; // 填充数组随机值}printf("排序前: ");show_arr(arr, LEN);sorts[i](arr, LEN); // 调用排序函数printf("排序后: ");show_arr(arr, LEN);printf("==========================\n");printf("\n");}return 0;
}
http://www.lryc.cn/news/412717.html

相关文章:

  • 仓颉语言 -- 宏
  • Nginx代理minIO图片路径实现公网图片访问
  • 从零开始掌握tcpdump:参数详解
  • 漏洞挖掘 | edusrc记一次某中学小程序渗透测试
  • vulhub:nginx解析漏洞CVE-2013-4547
  • 备战秋招:2024游戏开发入行与跳槽面试详解
  • 红外热成像手持终端:从建筑检测到野外搜救的全方位应用
  • day07 项目启动以及git
  • 学会网络安全:开启广阔职业与责任之旅
  • UE5 镜头
  • SpringBoot如何实现简单的跨域配置
  • vue列表进入详情页实现上一篇下一篇功能
  • kalman的python实现
  • 查找算法:线性查找,golang实现
  • 【图像识别】十大数据集合集!
  • C++ | Leetcode C++题解之第312题戳气球
  • SSM学习11:springboot基础
  • 【前端 18】安装Node.js
  • C#/Winform入门、进阶、强化、扩展、知识体系完善等知识点学习、性能优化、源码分析专栏分享
  • springboot的表现层/控制层controller开发
  • 前端使用html2canvas在页面截图并导出,以及截图中含有图片时的跨域问题解决
  • 道可云元宇宙每日资讯|第十二届互联网安全大会在北京开幕
  • 前端面试基础题(微信公众号:前端面试成长之路)
  • https执行过程,特点,作用
  • 【优秀python案例】基于Python的豆瓣电影TOP250爬虫与可视化设计与实现
  • 如何设计一个测试用例
  • 黄金和原油市场波动背后的经济信号
  • 【Python数值分析】革命:引领【数学建模】新时代的插值与拟合前沿技术
  • PCL-基于超体聚类的LCCP点云分割
  • git 推送时出现错误 Locking support detected on remote “origin“