当前位置: 首页 > news >正文

用神经网络分类上和下

( A, B )---3*30*2---( 1, 0 )( 0, 1 )

做一个网络,输入为3个点,训练集A,B各有4张图片。让B的4张图片全是0.排列组合A,记录迭代次数平均值的变化。收敛误差为7e-4,每个网络收敛199次。

其中得到一组数据

差值结构

1-A-B

迭代次数

差值结构

2-A-B

迭代次数

0

0

0

0*3*1*6-0*0*0*0

6394.4774

1

1

0

6*1*3*0-0*0*0*0

7134.0452

0

1

1

0*3*1*6-0*0*0*0

6394.4774

0

0

1

6*1*3*0-0*0*0*0

7134.0452

0

0

1

0*3*1*6-0*0*0*0

6394.4774

0

1

1

6*1*3*0-0*0*0*0

7134.0452

1

1

0

0*3*1*6-0*0*0*0

6394.4774

0

0

0

6*1*3*0-0*0*0*0

7134.0452

0

0

0

0*6*4*3-0*0*0*0

6408.3869

0

1

1

3*4*6*0-0*0*0*0

7174.8894

1

1

0

0*6*4*3-0*0*0*0

6408.3869

1

0

0

3*4*6*0-0*0*0*0

7174.8894

1

0

0

0*6*4*3-0*0*0*0

6408.3869

1

1

0

3*4*6*0-0*0*0*0

7174.8894

0

1

1

0*6*4*3-0*0*0*0

6408.3869

0

0

0

3*4*6*0-0*0*0*0

7174.8894

0

1

1

3*1*6*0-0*0*0*0

6488.0352

0

0

0

0*6*1*3-0*0*0*0

7141.7538

0

0

1

3*1*6*0-0*0*0*0

6488.0352

1

1

0

0*6*1*3-0*0*0*0

7141.7538

1

1

0

3*1*6*0-0*0*0*0

6488.0352

0

0

1

0*6*1*3-0*0*0*0

7141.7538

0

0

0

3*1*6*0-0*0*0*0

6488.0352

0

1

1

0*6*1*3-0*0*0*0

7141.7538

1

1

0

6*4*3*0-0*0*0*0

6390.9497

0

0

0

0*3*4*6-0*0*0*0

7112.809

1

0

0

6*4*3*0-0*0*0*0

6390.9497

0

1

1

0*3*4*6-0*0*0*0

7112.809

0

1

1

6*4*3*0-0*0*0*0

6390.9497

1

0

0

0*3*4*6-0*0*0*0

7112.809

0

0

0

6*4*3*0-0*0*0*0

6390.9497

1

1

0

0*3*4*6-0*0*0*0

7112.809

0

0

1

1*6*0*3-0*0*0*0

6462.3166

0

1

1

3*0*6*1-0*0*0*0

7140.9397

1

1

0

1*6*0*3-0*0*0*0

6462.3166

0

0

0

3*0*6*1-0*0*0*0

7140.9397

0

0

0

1*6*0*3-0*0*0*0

6462.3166

1

1

0

3*0*6*1-0*0*0*0

7140.9397

0

1

1

1*6*0*3-0*0*0*0

6462.3166

0

0

1

3*0*6*1-0*0*0*0

7140.9397

1

0

0

4*3*0*6-0*0*0*0

6486.1156

1

1

0

6*0*3*4-0*0*0*0

7181.9447

0

1

1

4*3*0*6-0*0*0*0

6486.1156

0

0

0

6*0*3*4-0*0*0*0

7181.9447

0

0

0

4*3*0*6-0*0*0*0

6486.1156

0

1

1

6*0*3*4-0*0*0*0

7181.9447

1

1

0

4*3*0*6-0*0*0*0

6486.1156

1

0

0

6*0*3*4-0*0*0*0

7181.9447

1

1

0

6*0*3*1-0*0*0*0

6379.392

0

0

1

1*3*0*6-0*0*0*0

7126.4573

0

0

0

6*0*3*1-0*0*0*0

6379.392

0

1

1

1*3*0*6-0*0*0*0

7126.4573

0

1

1

6*0*3*1-0*0*0*0

6379.392

0

0

0

1*3*0*6-0*0*0*0

7126.4573

0

0

1

6*0*3*1-0*0*0*0

6379.392

1

1

0

1*3*0*6-0*0*0*0

7126.4573

0

1

1

3*0*6*4-0*0*0*0

6444.2764

1

0

0

4*6*0*3-0*0*0*0

7173.6533

0

0

0

3*0*6*4-0*0*0*0

6444.2764

1

1

0

4*6*0*3-0*0*0*0

7173.6533

1

1

0

3*0*6*4-0*0*0*0

6444.2764

0

0

0

4*6*0*3-0*0*0*0

7173.6533

1

0

0

3*0*6*4-0*0*0*0

6444.2764

0

1

1

4*6*0*3-0*0*0*0

7173.6533

这16组数据,左侧为第1列,右侧的为第2列。第1列的迭代次数全都小于第2列, 并且第1列和第2列的差值结构都是上下对称的,比如前3组

1

2

0

0

0

1

1

0

0

1

1

0

0

1

0

0

1

0

1

1

1

1

0

0

0

0

0

0

0

0

1

1

1

1

0

1

0

0

1

0

0

1

1

0

0

1

1

0

0

0

0

1

1

0

0

0

0

0

1

1

1

0

1

1

0

0

0

1

0

0

0

0

1

1

左右两侧的结构是对称的,但迭代次数确不相同,这种对称性被破缺了,神经网络到底是如何判断哪个是上,哪个是下的?

比较二者的结构

0*3*1*6-0*0*0*0

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

0

1

1

0

0

1

1

1

0

0

0

1

1

1

0

如果略去全是0的一行,第1列的结构都可以变换成上三角矩阵。

3*4*6*0-0*0*0*0

0

1

1

0

1

1

1

1

0

1

0

0

1

0

0

1

0

0

0

1

1

1

1

0

1

1

0

1

1

0

1

0

0

0

1

1

0

0

0

而第2列的结构经变换后得到的都是下三角矩阵。

所以上三角矩阵的迭代次数是小于下三角矩阵的迭代次数的,

A

B

1

1

0

0

0

0

0

1

1

1

0

0

0

0

1

1

1

0

0

0

0

0

1

1

 质心越低的迭代次数越大。所以对于这种特别的情况,用神经网络分类上下是可能的。尽管差值结构可以按照行1→2→3→4→1的顺序随意的变换而不改变迭代次数,但这种变换本身并不会改变形态内在的上下特征,这意味这神经网络各行的权重是不同的。而差值结构的列都可以按照1→2→3→1的顺序变换而不改变迭代次数,如

0

0

0

0*3*1*6-0*0*0*0

6394.477387

0

1

1

0*3*1*6-0*0*0*0

6394.477387

0

0

1

0*3*1*6-0*0*0*0

6394.477387

1

1

0

0*3*1*6-0*0*0*0

6394.477387

0

0

0

0*6*2*5-0*0*0*0

6478.336683

1

1

0

0*6*2*5-0*0*0*0

6478.336683

0

1

0

0*6*2*5-0*0*0*0

6478.336683

1

0

1

0*6*2*5-0*0*0*0

6478.336683

0

0

0

0*5*4*3-0*0*0*0

6415.944724

1

0

1

0*5*4*3-0*0*0*0

6415.944724

1

0

0

0*5*4*3-0*0*0*0

6415.944724

0

1

1

0*5*4*3-0*0*0*0

6415.944724

这说明神经网络各列是同权的,无差别,所以如果神经网络有质心,应该是到边的而不是到中心的。

差值结构

1-A-B

迭代次数

差值结构

2-A-B

迭代次数

1

1

0

0

0

0

0*3*1*6-0*0*0*0

6394.4774

1

1

0

6*1*3*0-0*0*0*0

7134.0452

0

0

1

0

1

1

0

1

1

0*3*1*6-0*0*0*0

6394.4774

0

0

1

6*1*3*0-0*0*0*0

7134.0452

0

1

1

0

0

1

0

0

1

0*3*1*6-0*0*0*0

6394.4774

0

1

1

6*1*3*0-0*0*0*0

7134.0452

1

1

0

1

1

0

0*3*1*6-0*0*0*0

6394.4774

0

0

0

6*1*3*0-0*0*0*0

7134.0452

0

1

1

0

0

0

0*6*4*3-0*0*0*0

6408.3869

0

1

1

3*4*6*0-0*0*0*0

7174.8894

1

0

0

1

1

0

1

1

0

0*6*4*3-0*0*0*0

6408.3869

1

0

0

3*4*6*0-0*0*0*0

7174.8894

1

1

0

1

0

0

1

0

0

0*6*4*3-0*0*0*0

6408.3869

1

1

0

3*4*6*0-0*0*0*0

7174.8894

0

1

1

0

1

1

0*6*4*3-0*0*0*0

6408.3869

0

0

0

3*4*6*0-0*0*0*0

7174.8894

1

1

0

0

1

1

3*1*6*0-0*0*0*0

6488.0352

0

0

0

0*6*1*3-0*0*0*0

7141.7538

0

0

1

0

1

1

0

0

1

3*1*6*0-0*0*0*0

6488.0352

1

1

0

0*6*1*3-0*0*0*0

7141.7538

0

1

1

0

0

1

1

1

0

3*1*6*0-0*0*0*0

6488.0352

0

0

1

0*6*1*3-0*0*0*0

7141.7538

1

1

0

0

0

0

3*1*6*0-0*0*0*0

6488.0352

0

1

1

0*6*1*3-0*0*0*0

7141.7538

0

1

1

1

1

0

6*4*3*0-0*0*0*0

6390.9497

0

0

0

0*3*4*6-0*0*0*0

7112.809

1

0

0

1

1

0

1

0

0

6*4*3*0-0*0*0*0

6390.9497

0

1

1

0*3*4*6-0*0*0*0

7112.809

1

1

0

1

0

0

0

1

1

6*4*3*0-0*0*0*0

6390.9497

1

0

0

0*3*4*6-0*0*0*0

7112.809

0

1

1

0

0

0

6*4*3*0-0*0*0*0

6390.9497

1

1

0

0*3*4*6-0*0*0*0

7112.809

1

1

0

0

0

1

1*6*0*3-0*0*0*0

6462.3166

0

1

1

3*0*6*1-0*0*0*0

7140.9397

0

0

1

0

1

1

1

1

0

1*6*0*3-0*0*0*0

6462.3166

0

0

0

3*0*6*1-0*0*0*0

7140.9397

0

1

1

0

0

1

0

0

0

1*6*0*3-0*0*0*0

6462.3166

1

1

0

3*0*6*1-0*0*0*0

7140.9397

1

1

0

0

1

1

1*6*0*3-0*0*0*0

6462.3166

0

0

1

3*0*6*1-0*0*0*0

7140.9397

0

1

1

1

0

0

4*3*0*6-0*0*0*0

6486.1156

1

1

0

6*0*3*4-0*0*0*0

7181.9447

1

0

0

1

1

0

0

1

1

4*3*0*6-0*0*0*0

6486.1156

0

0

0

6*0*3*4-0*0*0*0

7181.9447

1

1

0

1

0

0

0

0

0

4*3*0*6-0*0*0*0

6486.1156

0

1

1

6*0*3*4-0*0*0*0

7181.9447

0

1

1

1

1

0

4*3*0*6-0*0*0*0

6486.1156

1

0

0

6*0*3*4-0*0*0*0

7181.9447

1

1

0

1

1

0

6*0*3*1-0*0*0*0

6379.392

0

0

1

1*3*0*6-0*0*0*0

7126.4573

0

0

1

0

1

1

0

0

0

6*0*3*1-0*0*0*0

6379.392

0

1

1

1*3*0*6-0*0*0*0

7126.4573

0

1

1

0

0

1

0

1

1

6*0*3*1-0*0*0*0

6379.392

0

0

0

1*3*0*6-0*0*0*0

7126.4573

1

1

0

0

0

1

6*0*3*1-0*0*0*0

6379.392

1

1

0

1*3*0*6-0*0*0*0

7126.4573

0

1

1

0

1

1

3*0*6*4-0*0*0*0

6444.2764

1

0

0

4*6*0*3-0*0*0*0

7173.6533

1

0

0

1

1

0

0

0

0

3*0*6*4-0*0*0*0

6444.2764

1

1

0

4*6*0*3-0*0*0*0

7173.6533

1

1

0

1

0

0

1

1

0

3*0*6*4-0*0*0*0

6444.2764

0

0

0

4*6*0*3-0*0*0*0

7173.6533

0

1

1

1

0

0

3*0*6*4-0*0*0*0

6444.2764

0

1

1

4*6*0*3-0*0*0*0

7173.6533

http://www.lryc.cn/news/41.html

相关文章:

  • VS Code 1.75 发布!
  • Vue2仿网易云风格音乐播放器(附源码)
  • Spring相关面试题
  • 操作符详解(上篇)
  • 采样电路的3个组成部分
  • ffmpeg硬解码与软解码的压测对比
  • 操作符——“C”
  • YSP的UI界面设计
  • 干货 | 什么是磁传感器?最常用的磁传感器类型及应用
  • 操作符(运算符)详解
  • 【LeetCode每日一题】【2023/2/9】1797. 设计一个验证系统
  • 计算机图形学:改进的中点BH算法
  • 【SQL开发实战技巧】系列(六):从执行计划看NOT IN、NOT EXISTS 和 LEFT JOIN效率,记住内外关联条件不要乱放
  • 十分钟利用环信WebIM-vue3-Demo,打包上线一个即时通讯项目【含音视频通话】
  • pandas——DataFrame基本操作(二)【建议收藏】
  • PostgreSQL查询引擎——General Expressions Grammar之restricted expression
  • 从某种程度上来看,产业互联网是一次对于互联网的弥补和修正
  • 【C#Unity题】1.委托和事件在使用上的区别是什么?2.C#中 == 和 Equals 的区别是什么?
  • FFmpeg5.0源码阅读——内存池AVBufferPool
  • Python学习------起步7(字符串的连接、删除、修改、查询与统计、类型判断及字符串字母大小写转换)
  • 雪花算法snowflake
  • Part 4 描述性统计分析(占比 10%)——上
  • Linux系统安全:安全技术和防火墙
  • 【干货】Python:turtle库的用法
  • 信息安全与网络安全有什么区别?
  • 花了5年时间,用过市面上95%的工具,终于找到这款万能报表工具
  • ESP32S3系列--SPI主机驱动详解(一)
  • 2023开工开学火热!远行的人们,把淘特箱包送上顶流
  • Intel x86_64 PMU简介
  • Vue (2)