当前位置: 首页 > news >正文

最快方法求最长上升子序列(LIS)+最长公共子序列(LCS)模板(C/C++)

目录

1  LIS算法(最长上升子序列)

1.1  简介

1.2  代码

1.3  相关解释

2  LCS算法(最长公共子序列)

2.1  简介

2.2  代码(动态规划,时间复杂度O(nlogn))

2.3  特殊情况下的优化


1  LIS算法(最长上升子序列)

1.1  简介

LIS(Longest Increasing Subsequence)最长上升子序列
一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序列(ai1, ai2, …, aiK),这里1 <= i1 < i2 < … < iK <= N。
比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).
你的任务,就是对于给定的序列,求出最长上升子序列的长度。

1.2  代码

#include <bits/stdc++.h>
using namespace std;int a[99999],dp[99999]; // a数组为数据,dp[i]表示长度为i+1的LIS结尾元素的最小值int main()
{int n;while(cin>>n)//**解释1** {for(int i=0; i<n; i++){cin>>a[i];dp[i]=INT_MAX; // 初始化为无限大}int pos=0;    // 记录dp当前最后一位的下标dp[0]=a[0];   // dp[0]值显然为a[0]for(int i=1; i<n; i++){if(a[i]>dp[pos])    // 若a[i]大于dp数组最大值,则直接添加dp[++pos] = a[i];else    // 否则找到dp中第一个大于等于a[i]的位置,用a[i]替换之。dp[lower_bound(dp,dp+pos+1,a[i])-dp]=a[i];  // 二分查找**解释2** }cout<<pos+1<<endl;}return 0;
}

1.3  相关解释

解释1:循环用例

假设我们根据给定的数字a和b,计算a与b的和。

如果使用这段代码:

#include <iostream>using namespace std;int main(){int a, b;cin >> a >> b;cout << a + b << endl;return 0;
}

则只能输入一组a和b,计算结束后程序就会退出。想要再计算一组和,需要重新运行程序。

如果使用循环用例:

#include <iostream>using namespace std;int main(){int a, b;while(cin >> a >> b){cout << a + b << endl;}return 0;
}

则可以处理多组输入,并且返回多组输出。

解释2:二分法找第一个大于/小于某个数的函数

lower_bound( )和upper_bound( )都是利用二分查找的方法在一个排好序的数组中进行查找的。

在从小到大的排序数组中,

lower_bound( begin,end,num):从数组的[begin,end)二分查找第一个大于或等于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。

upper_bound( begin,end,num):从数组的[begin,end)二分查找第一个大于num的数字,找到返回该数字的地址,不存在则返回end。通过返回的地址减去起始地址begin,得到找到数字在数组中的下标。

2  LCS算法(最长公共子序列)

2.1  简介

LCS是Longest Common Subsequence的缩写,即最长公共子序列。一个序列,如果是两个或多个已知序列的子序列,且是所有子序列中最长的,则为最长公共子序列。

比如,对于char x[]="aabcd";有顺序且相互相邻的aabc是其子序列,有顺序但是不相邻的abc也是其公共子序列。即,只要得出序列中各个元素属于所给出的数列,就是子序列。

再加上char y[]="12abcabcd";对比出才可以得出最长公共子序列abcd。

2.2  代码(动态规划,时间复杂度O(n*n))

#include<bits/stdc++.h>
using namespace std;int DP[1000][1000];   
int LCS_length(string a, string b)//长度 
{int M = a.size();int N = b.size();for(int i=1; i<=M; i++){for(int j=1; j<=N; j++){if(a[i-1] == b[j-1]) DP[i][j] = DP[i-1][j-1] + 1;//最好 else if(DP[i-1][j] >= DP[i][j-1]) DP[i][j] = DP[i-1][j];else  DP[i][j] = DP[i][j-1];}}return DP[M][N];
}void LCS(string a, string b, int i, int j)//具体公共字符串 
{if(i==0 || j==0) return;//设置边界 if(a[i-1]==b[j-1]){LCS(a, b, i-1, j-1);cout<<a[i-1]; }else if(DP[i-1][j] > DP[i][j-1]) LCS(a, b, i-1, j);else LCS(a, b, i, j-1);
}int main()
{string a, b;cout<<"请输入两个字符串:"<<endl;while(cin>>a>>b && a!="#"){cout<<"最大公共子序列长度为:"<<LCS_length(a, b)<<endl;cout<<"最大公共子序列为:";LCS(a, b, a.size(), b.size());cout<<endl<<"请输入两个字符串:"<<endl;}return 0;
}

2.3  特殊情况下的优化(映射,时间复杂度O(nlogn))

特殊情况:一个序列没有重复元素,另一个序列随意

#include<bits/stdc++.h> //一个序列所有元素都不重复 
using namespace std;
map <int,int> ma; 
int n,m;
int s1[300009],s2[300009];
int a[300009],low[300009],len;int main()
{cin>>n>>m;for(int i=1;i<=n;i++)cin>>s1[i];for(int i=1;i<=m;i++)cin>>s2[i];for(int i=1;i<=m;i++)ma[s2[i]]=i;for(int i=1;i<=n;i++)a[i]=ma[s1[i]];int t=1;while(a[t]==0) t++;low[++len]=a[t];for(int i=2;i<=n;i++){if(a[i]==0) continue;if(a[i]>low[len])low[++len]=a[i];else{low[upper_bound(low+1,low+len+1,a[i])-low]=a[i];//自带函数}}   printf("%d",len);return 0;    
}

http://www.lryc.cn/news/40970.html

相关文章:

  • 012+limou+C语言深入知识——(4)“结构体”与“枚举体”与“联合体”
  • Canvas百战成神-圆(1)
  • 详解分库分表设计
  • 动态规划-基础(斐波那契数、爬楼梯、使用最小花费爬楼梯、不同路径、不同路径II、整数拆分、不同的二叉搜索树)
  • 深入理解WebSocket协议
  • Vector的扩容机制
  • 22讲MySQL有哪些“饮鸩止渴”提高性能的方法
  • 10.0自定义SystemUI下拉状态栏和通知栏视图(六)之监听系统通知
  • 怎样在外网登录访问CRM管理系统?
  • Activity工作流(三):Service服务
  • 算法--最长回文子串--java--python
  • ElasticSearch-第二天
  • 【AI大比拼】文心一言 VS ChatGPT-4
  • 美团笔试-3.18
  • 【12】SCI易中期刊推荐——计算机信息系统(中科院4区)
  • 好不容易约来了一位程序员来面试,结果人家不做笔试题
  • 这几个过时Java技术不要再学了
  • EEPROM芯片(24c02)使用详解(I2C通信时序分析、操作源码分析、原理图分析)
  • Django4.0新特性-主要变化
  • MySQL高级面试题整理
  • 【Java】面向对象三大基本特征
  • 蓝桥杯C++组怒刷50道真题(填空题)
  • Shell自动化管理 for ORACLE DBA
  • Unity学习日记13(画布相关)
  • 初阶C语言:冒泡排序
  • 带头双向循环链表
  • C#中的DataGridView中添加按钮并操作数据
  • WEB安全 PHP基础
  • 基础篇:07-Nacos注册中心
  • 端口镜像讲解