当前位置: 首页 > news >正文

每日Attention学习12——Exterior Contextual-Relation Module

模块出处

[ISBI 22] [link] [code] Duplex Contextual Relation Network for Polyp Segmentation


模块名称

Exterior Contextual-Relation Module (ECRM)


模块作用

内存型特征增强模块


模块结构

在这里插入图片描述


模块思想

原文表述:在临床环境中,不同样本之间存在息肉的同步视觉模式。基于这一关键观察,属于所有训练数据的同一语义类的区域特征应该具有上下文关系。因此,我们提出了一种新颖的跨不同样本的上下文关系探索模块。
具体做法则是,对于编码器最后一层得到的全局特征(图中红色方块),进行两次增强:
第一次是直接将全局特征送入一个 1 × 1 1 \times 1 1×1卷积(图中浅紫色部分)以获取一个粗糙分割mask,该mask与全局特征相乘后便能得到过滤掉背景特征的增强特征(图中enqueue左边的部分)。
第二次增强则是基于网络存储的源自其他训练样本的历史上下文信息(图中的Cross-Batch Memory)。即,当前特征与Memory内特征进行Cross Attention操作,从而利用历史经验对当前状态进行补全。


模块代码

代码实现有几个额外要注意的地方:

  • 模块返回的aux_out要进行side supervision监督,以保证准确性;
  • Memory负责维护网络的历史信息,为防止被破坏,这部分信息并不参与梯度更新过程;
  • 在测试阶段,Memory不再更新,直接使用训练所存储的历史信息,这一思想与BatchNorm类似。
import torch
from torch import nndef conv2d(in_channel, out_channel, kernel_size):layers = [nn.Conv2d(in_channel, out_channel, kernel_size, padding=kernel_size // 2, bias=False),nn.BatchNorm2d(out_channel),nn.ReLU(),]return nn.Sequential(*layers)def conv1d(in_channel, out_channel):layers = [nn.Conv1d(in_channel, out_channel, 1, bias=False),nn.BatchNorm1d(out_channel),nn.ReLU(),]return nn.Sequential(*layers)class ECRM(nn.Module):def __init__(self, bank_size=20, feat_channels=512, num_classes=1):super(ECRM, self).__init__()  # BANK CONFIGself.bank_size = bank_sizeself.register_buffer("bank_ptr", torch.zeros(1, dtype=torch.long))  # memory bank pointerself.register_buffer("bank", torch.zeros(self.bank_size, feat_channels, num_classes))  # memory bankself.bank_full = False# ATTENTION CONFIGself.feat_channels = feat_channelsself.L = nn.Conv2d(feat_channels, num_classes, 1)self.X = conv2d(feat_channels, 512, 3)self.phi = conv1d(512, 256)self.psi = conv1d(512, 256)self.delta = conv1d(512, 256)self.rho = conv1d(256, 512)self.g = conv2d(512 + 512, 512, 1)def init(self):self.bank_ptr[0] = 0self.bank_full = False@torch.no_grad()def update_bank(self, x):ptr = int(self.bank_ptr)batch_size = x.shape[0]vacancy = self.bank_size - ptrif batch_size >= vacancy:self.bank_full = Truepos = min(batch_size, vacancy)self.bank[ptr:ptr+pos] = x[0:pos].clone()# update pointerptr = (ptr + pos) % self.bank_sizeself.bank_ptr[0] = ptrdef enhance_by_memory(self, bank, X_flat, X):batch, n_class, height, width = X.shape# query = S * Cquery = self.phi(bank).squeeze(dim=2)# key: = B * C * HWkey = self.psi(X_flat)# logit = HW * S * B (cross image relation)logit = torch.matmul(query, key).transpose(0,2)# attn = HW * S * Battn = torch.softmax(logit, 2)# delta = S * Cdelta = self.delta(bank).squeeze(dim=2)# attn_sum = B * C * HWattn_sum = torch.matmul(attn.transpose(1,2), delta).transpose(1,2)# x_obj = B * C * H * WX_obj = self.rho(attn_sum).view(batch, -1, height, width)concat = torch.cat([X, X_obj], 1)out = self.g(concat)return outdef get_prototype(self, input):L = self.L(input)aux_out = Lbatch, n_class, _, _ = L.shapel_flat = L.view(batch, n_class, -1)M = torch.softmax(l_flat, -1)X = self.X(input)channel = X.shape[1]X_flat = X.view(batch, channel, -1)f_k = (M @ X_flat.transpose(1, 2)).transpose(1, 2)return aux_out, f_k, X_flat, Xdef forward(self, x, flag='train'):# x [3, 512, 11, 11]# patch [3, 512, 1]aux_out, patch, feats_flat, feats = self.get_prototype(x)if flag == 'train':self.update_bank(patch)ptr = int(self.bank_ptr)if self.bank_full == True:out = self.enhance_by_memory(self.bank, feats_flat, feats)else:out = self.enhance_by_memory(self.bank[0:ptr], feats_flat, feats)elif flag == 'test':out = self.enhance_by_memory(patch, feats_flat, feats)return out, aux_outif __name__ == '__main__':x = torch.randn([3, 512, 11, 11])ecrm = ECRM()out = ecrm(x)print(out[0].shape)  # 3, 512, 11, 11print(out[1].shape)  # 3, 1, 11, 11

http://www.lryc.cn/news/405828.html

相关文章:

  • 为什么现在电销公司这么难?
  • 每天一个数据分析题(四百四十二)- 标签与指标
  • [论文笔记] pai-megatron-patch Qwen2-72B/7B/1.5B 长文本探路
  • 【SpringCloud】微服务远程调用OpenFeign
  • MySQL零散拾遗(四)
  • 大语言模型-检索测评指标
  • Zookeeper集群中节点之间数据是如何同步的
  • HTTPServer改进思路2(mudou库核心思想融入)
  • Kubernetes Secret 详解
  • docker笔记4-部署
  • 有监督学习基础
  • 揭开 AI 绘画提示词的神秘密码!
  • macOS 10.15中屏蔽Microsoft Edge浏览器的更新提示
  • Qt 实战(3)数据类型 | 3.2、QVariant
  • Docker中安装的postgresql14在启用vector扩展的时候,找不到该扩展的控制文件。
  • JS防抖和节流
  • OpenWrt 为软件包和docker空间扩容
  • 重要的工作任务,怎么在电脑桌面设置倒计时?
  • Failed to build get_cli:get:的解决方案
  • 短视频矩阵源码技术分享
  • 轮播图自定义内容
  • 大数据-44 Redis 慢查询日志 监视器 慢查询测试学习
  • Istio_01_Istio初识
  • leetcode日记(47)螺旋矩阵Ⅱ
  • centos系统mysql主从复制(一主一从)
  • IEDA怎么把springboot项目 启动多个
  • Vue 3项目安装Element-Plus
  • Git下载安装
  • linux中的目录操作函数
  • JSON 文件第一段飘红