当前位置: 首页 > news >正文

通义千问AI模型对接飞书机器人-模型配置(2-1)

一 背景

根据业务或者使用场景搭建自定义的智能ai模型机器人,可以较少我们人工回答的沟通成本,而且可以更加便捷的了解业务需求给出大家设定的业务范围的回答,目前基于阿里云的通义千问模型研究。

二 模型研究

参考阿里云帮助文档:

https://help.aliyun.com/document_detail/2784263.html

https://help.aliyun.com/document_detail/2784278.html?spm=a2c4g.2779977.0.0.41c247904gVRRu

https://help.aliyun.com/zh/model-studio/user-guide/model-tools/?spm=a2c4g.11186623.0.0.451d5f17l5DF7U

1.通过阿里云百炼平台构建我们的应用模型

2.搭建我们的数据中心&知识库

3.创建应用,关联知识库文档做模型

1、模型概览

模型服务模型名称模型描述备注
通义千问qwen-longqwen-long是在通义千问针对超长上下文处理场景的大语言模型,支持中文、英文等不同语言输入,支持最长1000万tokens(约1500万字或1.5万页文档)的超长上下文对话。配合同步上线的文档服务,可支持word、pdf、markdown、epub、mobi等多种文档格式的解析和对话。
qwen-turbo通义千问超大规模语言模型,支持中文、英文等不同语言输入。百炼平台支持,智能思考度偏低响应较快
qwen-plus通义千问超大规模语言模型增强版,支持中文、英文等不同语言输入。百炼平台支持,兼顾智能思考跟响应的
qwen-max通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。随着模型的升级,qwen-max将滚动更新。如果希望使用固定版本,请使用历史快照版本。当前qwen-max模型与qwen-max-0428快照版本等价,均为最新版本的qwen-max模型,同时也是当前通义千问2.5产品版本背后的API模型。百炼平台支持,智能思考度较高响应较慢
qwen-max-0428通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年4月28号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-0403通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年4月3号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-0107通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年1月7号的历史快照稳定版本,仅推荐特定需求客户访问。
qwen-max-1201通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2023年12月1号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-longcontext通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。

通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。随着模型的升级,qwen-max将滚动更新。如果希望使用固定版本,请使用历史快照版本。当前qwen-max模型与qwen-max-0428快照版本等价,均为最新版本的qwen-max模型,同时也是当前通义千问2.5产品版本背后的API模型。百炼平台支持,智能思考度较高响应较慢
qwen-max-0428通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年4月28号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-0403通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年4月3号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-0107通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2024年1月7号的历史快照稳定版本,仅推荐特定需求客户访问。
qwen-max-1201通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。该模型为qwen-max的2023年12月1号的历史快照稳定版本,预期维护到下个快照版本发布时间(待定)后一个月。
qwen-max-longcontext通义千问千亿级别超大规模语言模型,支持中文、英文等不同语言输入。

2、AI应用步骤搭建

Step 1:数据管理-导入数据

 

Step 2:创建知识索引

选择导入数据到知识库

 获取知识索引ID,支持与百炼Assistant API结合使用,支持RAG和插件的组合调用;

 查看切割文档

Step 3:创建应用

进入我的应用后,点击新增应用。然后在应用配置中,进行以下几步操作:

  1. 选择模型。目前仅支持qwen-max模型,后续将支持更多的模型。同时,也可以支持设置模型内容生成的相关参数,如temperature等。

  2. 开启“知识检索增强”。

  3. 选择知识库,即在Step2中创建的知识索引。

  4. 点击“保存并发布”按钮。

 

4、测试AI应用

4.1 简单问题

4.2、自定义插件

在某些场景下,我们除了需要根据文档回答问题之外,还需要根据我们自定义的内容给出答案,例如查询公司某些业务的数据项,指标项等,这些三方ai无法清除,那么我们就可以通过自定义插件。

 创建自定义插件

 

 5 SDK对接

1、获取应用appid apikey

2、对接的地址

5.1、普通请求
@RequestMapping(value = "/ask/test")
public AssistantResp ask(@RequestBody AssistantReq req) {long l = System.currentTimeMillis();log.info("ask start={} message={}", l, req.getMessage());try {if (req.getMessage() == null || req.getMessage().trim().length() == 0) {return AssistantResp.builder().message("请输入问题").build();}ApplicationParam param = ApplicationParam.builder().apiKey("sk-&&&&&&&&").appId("f8a%%%%%%%%%%%%%%").prompt(req.getMessage()).sessionId(req.getSessionId()).temperature(0.5F).build();Application application = new Application();ApplicationResult result = application.call(param);log.info("result={}", JSONUtil.toJsonStr(result));AssistantResp ask = AssistantResp.builder().message(result.getOutput().getText()).build();log.info("请求耗时:{}", System.currentTimeMillis() - l);log.info("ask end={},message={}", System.currentTimeMillis(), ask.getMessage());return ask;} catch (Exception e) {return AssistantResp.builder().message("系统繁忙,请稍后再试").build();}}
5.2 流式响应
@RequestMapping(value = "/stream", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public ResponseEntity<StreamingResponseBody> stream(@RequestBody AssistantReq req) {try {ApplicationParam param = ApplicationParam.builder().apiKey("sk-&&&&&&&&&&").appId("**************").prompt(req.getMessage()).incrementalOutput(true).build();Application application = new Application();Flowable<ApplicationResult> resultFlowable = application.streamCall(param);StreamingResponseBody responseBody = outputStream -> {resultFlowable.blockingForEach(data -> {String content = data.getOutput().getText();log.info("content={}",content);outputStream.write(content.getBytes());outputStream.flush(); // 确保数据立即发送});};return ResponseEntity.ok().body(responseBody);} catch (NoApiKeyException e) {e.printStackTrace();} catch (InputRequiredException e) {e.printStackTrace();}return ResponseEntity.ok().body(null);
}
5.3 多轮会话
public void answer(String askStr,String tenantKey,String openId) throws Exception {//通过openId 获取 sessionIdString sessionId = map.get(openId);log.info("askStr start={}",askStr);ApplicationParam param = ApplicationParam.builder().apiKey("sk-b**********").appId("f**************").prompt(askStr).sessionId(sessionId).build();log.info("param={}",JSONUtil.toJsonStr(param));Application application = new Application();ApplicationResult result = application.call(param);if(result.getOutput().getSessionId()!=null){map.put(openId,result.getOutput().getSessionId());}String text = result.getOutput().getText();}

下一篇:通义千问AI模型对接飞书机器人-集成飞书机器人(2-2)-CSDN博客

http://www.lryc.cn/news/405065.html

相关文章:

  • [k8s源码]6.reflector
  • 前台文本直接取数据库值doFieldSQL插入SQL
  • 【06】LLaMA-Factory微调大模型——微调模型评估
  • 数学建模学习(1)遗传算法
  • NumPy冷知识66个
  • Wi-SUN无线通信技术 — 大规模分散式物联网应用首选
  • 在 Ubuntu Server 22.04 上安装 Docker 的详细步骤
  • 前端使用 Konva 实现可视化设计器(18)- 素材嵌套 - 加载阶段
  • vue3 -layui项目-左侧导航菜单栏
  • Spring AOP(1)
  • 第1关 -- Linux 基础知识
  • tensorflow keras Model.fit returning: ValueError: Unrecognized data type
  • 虚拟机固定配置IP
  • 【Pytorch实用教程】pytorch中random_split用法的详细介绍
  • 第二讲:NJ网络配置
  • pytorch中常见的模型3种组织方式 nn.Sequential(OrderedDict)
  • 达梦数据库DM8-索引篇
  • 【中项】系统集成项目管理工程师-第4章 信息系统架构-4.5技术架构
  • 随机梯度下降 (Stochastic Gradient Descent, SGD)
  • TDengine 3.3.2.0 发布:新增 UDT 及 Oracle、SQL Server 数据接入
  • Ubuntu 24.04 LTS 无法打开Chrome浏览器
  • linux中RocketMQ安装(单机版)及springboot中的使用
  • 亚信安全终端一体化解决方案入选应用创新典型案例
  • Django视图与URLs路由详解
  • 怎么关闭 Windows 安全中心,手动关闭 Windows Defender 教程
  • 洛谷看不了别人主页怎么办
  • 邮件安全篇:企业电子邮件安全涉及哪些方面?
  • 软件测试09 自动化测试技术(Selenium)
  • 记录解决springboot项目上传图片到本地,在html里不能回显的问题
  • C++ 中 const 关键字