当前位置: 首页 > news >正文

【目标检测】Anaconda+PyTorch配置

前言

  本文主要介绍在windows系统上的Anaconda、PyTorch关键步骤安装,为使用yolo所需的环境配置完善。同时也算是记录下我的配置流程,为以后用到的时候能笔记查阅。

Anaconda

软件安装

Anaconda官网:https://www.anaconda.com/

另外,Anaconda下携带的conda的基本命令,建议可以查看菜鸟教程的介绍。Anaconda 教程

  在上数官网完成安装后,进入系统自带命令行Ctrl+R输入cmd或者 Anaconda携带的Anaconda Prompt (Anaconda)都可以,二选一即可,我通常选用的是系统自带的命令行。

可以尝试看看Anaconda有没有被安装

conda -V

在这里插入图片描述

创建环境

继续接着在命令行里操作。以下步骤仅供参考具体,按照个人配置。

  1. 创建环境,指定环境名词,以及python版本

    conda create -n pytorch python=3.8
    

    在这里插入图片描述

  2. 进入环境

    conda activate pytorch
    

    在这里插入图片描述

    虚拟环境,共有两个包管理,是可以同时用的,分别是conda,pip。

PyTorch

  PyTorch是开源的Python机器学习库,在刚才创建好的环境中下载。并且因为我的电脑是有GPU的,所以下载流程按照安装GPU版本的走。假如是要安装CPU版本的话,只要相关包能下载就行,用conda或pip关系不大。安装GPU的话,我这边是选择用pip。

下述命令的执行都是要确保在虚拟环境中执行,也就是上述的(pytorch) C:\Users\XYZ>

当然可以先到PyTorch官网,按自身环境在选择器中选择,就能给出相应下载命令。[PyTorch下载选择器](conda install pytorch torchvision torchaudio cpuonly -c pytorch)

在这里插入图片描述

CPU版本

换源命令,逐行执行:

# 添加清华镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/peterjc123/
conda config --set show_channel_urls yes

下载命令,纯CPU版本

conda install pytorch torchvision torchaudio cpuonly

GPU版本

  尝试过用conda安装,试过换源等还是CPU版本的,网上又说是什么没有对应的GPU版本之类。所以最后选择用pip安装。

  1. 首先在命令行中,查看CUDA最高支持版本

    在这里插入图片描述

    最高支持的CUDA版本为12.2

  2. 我看到在PyTorch下载选择器上有,CUDA12.1版本的相关,下载的选项,就打算下载那个。但当时电脑版本的CUDA版本不匹配,就要去英伟达官网下载所需的版本。(非必要,假如版本已经对应)

    [英伟达-CUDA历史版本](CUDA Toolkit Archive | NVIDIA Developer)

    可以下述命令查看当前电脑的CUDA版本

    nvcc -V
    

    在这里插入图片描述

  3. 下载PyTorch,安装选择选择器命令下载。

    在这里插入图片描述

    pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
    

    不过要是按照上述命令下载的话,因为是国外源下载极慢,而且文件是2G左右,要是小一点还能接收。我记得网上有相对应的办法,可以从下述网址:download.pytorch.org/whl/torch_stable.html选定相对应的torch,torchvision的GPU版本文件,手动下载,在基于pip install 包名(该包一定要在目前命令行下,才能找到)导入。不过我嫌对应规则太绕了,就没看


      我的方法是,起始大的特殊的只有torch这个GPU版本的文件,我先是调用(在创建好的虚拟环境中)pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121,它会给出要下载包的名称,Ctrl+C中止下载后,在复制名称到download.pytorch.org/whl/torch_stable.html网址搜索下载,在导入,在重新执行上述pip3 inst...(省略)命令,重新拉取下载,其它的包体积都较小,慢点都没事了,或者加个国内源都可以。

  4. 检查 GPU 驱动程序和 CUDA 是否已启用

      检查 GPU 驱动程序和 CUDA 是否已启用并由 PyTorch 访问,请运行以下命令以返回是否启用了 CUDA 驱动程序:(相当于能启用GPU)

    python 
    import torch 
    torch.cuda.is_available()
    

    在这里插入图片描述

后续

这里,提下后续我在Pycharm上运行YOLO-V5的detect.py,出了问题:

在这里插入图片描述

后来,发现还torchvision没有按照pip命令,下载和torch对应的版本,可能还是CPU版本,就一直运行不起来。解决方法:回到Anaconda创建的虚拟环境中,卸载掉torchvision,还是去download.pytorch.org/whl/torch_stable.html调选对应的版本。

例如我上文中共在网址下载过这两个:

torch-2.3.1+cu121-cp38-cp38-win_amd64.whl

torchvision-0.18.1+cu121-cp38-cp38-win_amd64.whl

反正这里挺疑惑,我当时也正好截了图,明明下载对了,怎么后面又变回正常版本呢

在这里插入图片描述

http://www.lryc.cn/news/404853.html

相关文章:

  • 什么是离线语音识别芯片?与在线语音识别的区别
  • 使用Diffusion Models进行街景视频生成
  • UFO:革新Windows操作系统交互的UI聚焦代理
  • scp免密复制文件
  • Maven 的模块化开发示例
  • 通过QT进行服务器和客户端之间的网络通信
  • 【STM32 HAL库】DMA+串口
  • C#类型基础Part2-对象判等
  • 13.CSS 打印样式表 悬停下划线动画
  • C#基础:数据库分表的好处和实现方式
  • 基于3D开发引擎HOOPS平台的大型三维PLM系统的设计、开发与应用
  • 学习React(描述 UI)
  • mysql字符类型字段设置默认值为当前时间
  • java题目之数字加密以及如何解密
  • Linux基于CentOS7【yum】【vim】的基础学习,【普通用户提权】
  • 盛元广通实验室自动化生物样本库质量控制管理系统
  • Java | 自制AWT单词猜一猜小游戏(测试版)
  • docker搭建ES 8.14 集群
  • 自定义特征的智能演进:Mojo模型中的动态特征选择控制
  • Git->Git生成patch和使用patch
  • 开发面试算法题求教
  • OpenStack中nova的架构
  • 力扣高频SQL 50题(基础版)第五题
  • Air780EP- AT开发-阿里云应用指南
  • 【中项】系统集成项目管理工程师-第4章 信息系统架构-4.4数据架构
  • excel批量新建多个同类型的表格
  • React Native 与 Flutter:你的应用该如何选择?
  • DP学习——状态模式
  • 前端性能优化面试题汇总
  • C#基于SkiaSharp实现印章管理(4)