当前位置: 首页 > news >正文

softmax 函数的多种实现方式 包括纯C语言、C++版本、Eigen版本等

softmax 函数的多种实现方式 包括纯C语言、C++版本、Eigen版本等

flyfish

先看这里Softmax函数介绍

版本1 规矩的写法

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <cmath>// 计算 softmax 的函数
std::vector<double> softmax(const std::vector<double>& input) {// 找到最大元素以防止 exp 计算时溢出double maxProb = *std::max_element(input.begin(), input.end());// 计算指数并求和std::vector<double> expVals;expVals.reserve(input.size());for (double val : input) {expVals.push_back(std::exp(val - maxProb)); // 计算每个元素的指数}double sumExp = std::accumulate(expVals.begin(), expVals.end(), 0.0); // 求所有指数的和// 归一化指数值以得到 softmax 概率std::vector<double> softmaxProb;softmaxProb.reserve(input.size());for (double val : expVals) {softmaxProb.push_back(val / sumExp); // 每个指数值除以总和得到 softmax 概率}return softmaxProb;
}// 示例用法
int main() {std::vector<double> input = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}; // 示例输入std::vector<double> probabilities = softmax(input);// 输出 softmax 概率std::cout << "Softmax 概率:" << std::endl;for (double prob : probabilities) {std::cout << prob << " ";}std::cout << std::endl;// 找到具有最高概率的类别auto maxElementIter = std::max_element(probabilities.begin(), probabilities.end());int classId = std::distance(probabilities.begin(), maxElementIter);double confidence = *maxElementIter;std::cout << "预测类别: " << classId << " 置信度: " << confidence << std::endl;return 0;
}

版本2 合并循环,只使用一个 softmaxProb 向量来存储指数值和最终的 softmax 概率

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <cmath>// 计算 softmax 的函数
std::vector<double> softmax(const std::vector<double>& input) {// 找到最大元素以防止 exp 计算时溢出double maxProb = *std::max_element(input.begin(), input.end());// 计算指数和求和std::vector<double> softmaxProb(input.size());double sumExp = 0.0;for (size_t i = 0; i < input.size(); ++i) {softmaxProb[i] = std::exp(input[i] - maxProb);sumExp += softmaxProb[i];}// 归一化指数值以得到 softmax 概率for (double& val : softmaxProb) {val /= sumExp;}return softmaxProb;
}// 示例用法
int main() {std::vector<double> input = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}; // 示例输入std::vector<double> probabilities = softmax(input);// 输出 softmax 概率std::cout << "Softmax 概率:" << std::endl;for (double prob : probabilities) {std::cout << prob << " ";}std::cout << std::endl;// 找到具有最高概率的类别auto maxElementIter = std::max_element(probabilities.begin(), probabilities.end());int classId = std::distance(probabilities.begin(), maxElementIter);double confidence = *maxElementIter;std::cout << "预测类别: " << classId << " 置信度: " << confidence << std::endl;return 0;
}

版本3 C++17 使用并行执行策略

std::transform:用于计算每个元素的指数值,并存储在 expVals 中。使用并行执行策略可以提升计算效率。
std::reduce:用于并行求和,替代 std::accumulate。

#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <cmath>
#include <execution>// 计算 softmax 的函数
std::vector<double> softmax(const std::vector<double>& input) {// 找到最大元素以防止 exp 计算时溢出double maxProb = *std::max_element(input.begin(), input.end());// 计算指数和求和,同时避免重复遍历std::vector<double> expVals(input.size());std::transform(std::execution::par, input.begin(), input.end(), expVals.begin(), [maxProb](double val) {return std::exp(val - maxProb);});// 使用 std::reduce 并行求和double sumExp = std::reduce(std::execution::par, expVals.begin(), expVals.end(), 0.0);// 归一化指数值以得到 softmax 概率std::vector<double> softmaxProb(input.size());std::transform(std::execution::par, expVals.begin(), expVals.end(), softmaxProb.begin(), [sumExp](double val) {return val / sumExp;});return softmaxProb;
}// 示例用法
int main() {std::vector<double> input = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}; // 示例输入std::vector<double> probabilities = softmax(input);// 输出 softmax 概率std::cout << "Softmax 概率:" << std::endl;for (double prob : probabilities) {std::cout << prob << " ";}std::cout << std::endl;// 找到具有最高概率的类别auto maxElementIter = std::max_element(probabilities.begin(), probabilities.end());int classId = std::distance(probabilities.begin(), maxElementIter);double confidence = *maxElementIter;std::cout << "预测类别: " << classId << " 置信度: " << confidence << std::endl;return 0;
}

版本4 Eigen 库实现

利用 Eigen 库可以高效地进行矩阵和向量运算。Eigen 库通过优化内存布局和利用 SIMD 指令集来提升性能。
Eigen::Map 可以将标准库中的容器(如 std::vector)映射为 Eigen 向量,从而直接进行高效的向量运算。
配置 CMakeLists.txt

# 添加 Eigen 目录
set(EIGEN3_INCLUDE_DIR "path/to/eigen") # 将此路径替换为你解压缩 Eigen 的目录
include_directories(${EIGEN3_INCLUDE_DIR})
#include <iostream>
#include <vector>
#include <algorithm>
#include <Eigen/Dense>// 计算 softmax 的函数
std::vector<double> softmax(const std::vector<double>& input) {// 将输入向量转换为 Eigen 向量Eigen::VectorXd vec = Eigen::Map<const Eigen::VectorXd>(input.data(), input.size());// 找到最大元素以防止 exp 计算时溢出double maxProb = vec.maxCoeff();// 计算指数和求和Eigen::VectorXd expVals = (vec.array() - maxProb).exp();double sumExp = expVals.sum();// 归一化指数值以得到 softmax 概率std::vector<double> softmaxProb(input.size());Eigen::VectorXd result = expVals / sumExp;Eigen::VectorXd::Map(&softmaxProb[0], result.size()) = result;return softmaxProb;
}// 示例用法
int main() {std::vector<double> input = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}; // 示例输入std::vector<double> probabilities = softmax(input);// 输出 softmax 概率std::cout << "Softmax 概率:" << std::endl;for (double prob : probabilities) {std::cout << prob << " ";}std::cout << std::endl;// 找到具有最高概率的类别auto maxElementIter = std::max_element(probabilities.begin(), probabilities.end());int classId = std::distance(probabilities.begin(), maxElementIter);double confidence = *maxElementIter;std::cout << "预测类别: " << classId << " 置信度: " << confidence << std::endl;return 0;
}

版本5 纯C语言方式

#include <stdio.h>
#include <stdlib.h>
#include <math.h>// 计算 softmax 的函数
void softmax(const double* input, double* softmaxProb, int size) {// 找到最大元素以防止 exp 计算时溢出double maxProb = input[0];for (int i = 1; i < size; ++i) {if (input[i] > maxProb) {maxProb = input[i];}}// 计算指数和求和double sumExp = 0.0;for (int i = 0; i < size; ++i) {softmaxProb[i] = exp(input[i] - maxProb);sumExp += softmaxProb[i];}// 归一化指数值以得到 softmax 概率for (int i = 0; i < size; ++i) {softmaxProb[i] /= sumExp;}
}// 示例用法
int main() {double input[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}; // 示例输入int size = sizeof(input) / sizeof(input[0]);double* probabilities = (double*)malloc(size * sizeof(double));if (probabilities == NULL) {fprintf(stderr, "内存分配失败\n");return 1;}softmax(input, probabilities, size);// 输出 softmax 概率printf("Softmax 概率:\n");for (int i = 0; i < size; ++i) {printf("%f ", probabilities[i]);}printf("\n");// 找到具有最高概率的类别double maxProb = probabilities[0];int classId = 0;for (int i = 1; i < size; ++i) {if (probabilities[i] > maxProb) {maxProb = probabilities[i];classId = i;}}double confidence = maxProb;printf("预测类别: %d 置信度: %f\n", classId, confidence);free(probabilities);return 0;
}
http://www.lryc.cn/news/404436.html

相关文章:

  • R语言学习笔记11-读取csv-xlsx-txt-json-pdf-lua格式文件
  • Vue的计算属性和方法有什么区别
  • 学生成绩管理系统(C语言)
  • C语言 通讯录管理 完整代码
  • 2024北京国际智能工厂及自动化展览会亮点前瞻
  • 《网络安全等级保护制度详解》
  • 使用Wanderboat AI 来规划到巴黎的旅行计划
  • 基于YOLO8的目标检测系统:开启智能视觉识别之旅
  • 实验07 接口测试postman
  • C++常用但难记的语法
  • Qt 快速保存配置的方法
  • RKE部署k8s
  • 从0开始的STM32HAL库学习8
  • 微信小程序数组绑定使用案例(一)
  • Kudu节点数规划
  • flutter 充电气泡
  • 【C++】deque以及优先级队列
  • 手机如何播放电脑的声音?
  • 系统架构设计师教程 第3章 信息系统基础知识-3.6 办公自动化系统(OAS)-解读
  • 解决Element UI 表格组件懒加载数据刷新问题
  • 【系统架构设计 每日一问】二 MySql主从复制延迟可能是什么原因,怎么解决
  • Ubuntu Grub引导优化
  • 第3关 -- Git 基础知识
  • AttributeError: ‘WebDriver‘ object has no attribute ‘find_element_by_xpath‘
  • 题解:小S与机房里的电脑 Computer_C++算法竞赛_贪心_二分答案_模拟_数据结构
  • Python @staticmethod、super().__init__()和self
  • Linux网络:应用层协议HTTP(一)
  • Tomcat底层原理
  • 【Linux】Linux环境设置环境变量操作步骤
  • C语言:键盘录入案例