当前位置: 首页 > news >正文

【JavaScript 算法】拓扑排序:有向无环图的应用

在这里插入图片描述

🔥 个人主页:空白诗

在这里插入图片描述

文章目录

    • 一、算法原理
    • 二、算法实现
      • 方法一:Kahn算法
      • 方法二:深度优先搜索(DFS)
      • 注释说明:
    • 三、应用场景
    • 四、总结

在这里插入图片描述

拓扑排序(Topological Sorting)是一种线性排序方法,适用于有向无环图(DAG, Directed Acyclic Graph),它能够为图中的节点安排一个线性序列,使得对于图中的每一条有向边(u, v),顶点u在序列中出现在顶点v之前。拓扑排序在许多实际应用中都有重要作用,如任务调度、课程安排、编译依赖等。本文将详细介绍拓扑排序的原理、实现及其应用。


一、算法原理

拓扑排序的基本思想是:

  1. 选择一个入度为0的节点,将其输出到排序结果,并从图中删除该节点及其关联的所有边。
  2. 重复步骤1,直到所有节点都被输出,或者图中仍存在入度不为0的节点(此时图中存在环,无法进行拓扑排序)。

常用的两种实现拓扑排序的方法是Kahn算法和深度优先搜索(DFS)。


二、算法实现

方法一:Kahn算法

DFS

Kahn算法利用队列实现拓扑排序,通过不断删除入度为0的节点来构建拓扑序列。

/*** Kahn算法实现拓扑排序* @param {Object} graph - 图的邻接表表示* @return {string[]} - 拓扑排序结果*/
function kahnTopologicalSort(graph) {const inDegree = {}; // 记录每个节点的入度const queue = []; // 存储入度为0的节点const result = []; // 存储拓扑排序结果// 初始化入度表for (const node in graph) {inDegree[node] = 0;}// 计算每个节点的入度for (const node in graph) {for (const neighbor of graph[node]) {inDegree[neighbor]++;}}// 将入度为0的节点加入队列for (const node in inDegree) {if (inDegree[node] === 0) {queue.push(node);}}// 处理队列中的节点while (queue.length > 0) {const node = queue.shift(); // 取出队首节点result.push(node); // 将节点加入拓扑排序结果// 减少相邻节点的入度for (const neighbor of graph[node]) {inDegree[neighbor]--;// 如果相邻节点的入度为0,加入队列if (inDegree[neighbor] === 0) {queue.push(neighbor);}}}// 检查是否存在环if (result.length !== Object.keys(graph).length) {throw new Error("图中存在环,无法进行拓扑排序");}return result;
}// 示例
const graph = {A: ['C'],B: ['C', 'D'],C: ['E'],D: ['F'],E: ['H', 'F'],F: ['G'],G: [],H: []
};console.log(kahnTopologicalSort(graph)); // 输出: [ 'A', 'B', 'D', 'C', 'E', 'F', 'H', 'G' ]

方法二:深度优先搜索(DFS)

DFS

DFS方法通过递归遍历图,将访问过的节点存入栈中,最终从栈顶依次取出节点构建拓扑序列。

/*** 深度优先搜索实现拓扑排序* @param {Object} graph - 图的邻接表表示* @return {string[]} - 拓扑排序结果*/
function dfsTopologicalSort(graph) {const visited = new Set(); // 记录已访问的节点const stack = []; // 存储拓扑排序结果/*** 递归函数:DFS遍历节点* @param {string} node - 当前节点*/function dfs(node) {if (visited.has(node)) return;visited.add(node); // 标记节点为已访问for (const neighbor of graph[node]) {dfs(neighbor); // 递归访问相邻节点}stack.push(node); // 当前节点处理完毕,加入栈中}// 遍历所有节点,进行DFSfor (const node in graph) {dfs(node);}return stack.reverse(); // 返回栈的逆序,即拓扑排序结果
}// 示例
console.log(dfsTopologicalSort(graph)); // 输出: [ 'B', 'D', 'A', 'C', 'E', 'H', 'F', 'G' ]

注释说明:

  1. Kahn算法

    • inDegree:记录每个节点的入度。
    • queue:存储入度为0的节点。
    • result:存储拓扑排序结果。
    • 初始化入度表,并计算每个节点的入度。
    • 将入度为0的节点加入队列,处理队列中的节点,更新相邻节点的入度。
    • 最终检查是否存在环,返回拓扑排序结果。
  2. DFS方法

    • visited:记录已访问的节点。
    • stack:存储拓扑排序结果。
    • 递归遍历节点,将访问过的节点存入栈中,最终返回栈的逆序。

三、应用场景

  1. 任务调度:根据任务之间的依赖关系,确定任务的执行顺序。
  2. 课程安排:根据课程的先修关系,确定课程的学习顺序。
  3. 编译依赖:根据文件的依赖关系,确定编译的顺序。
  4. 数据处理:根据数据的依赖关系,确定处理的顺序。

四、总结

拓扑排序是一种用于有向无环图(DAG)的线性排序方法,通过Kahn算法和DFS方法可以实现拓扑排序,广泛应用于任务调度、课程安排、编译依赖和数据处理等场景。理解和掌握拓扑排序算法,对于解决实际问题具有重要意义。


http://www.lryc.cn/news/403509.html

相关文章:

  • Fastgpt本地或服务器私有化部署常见问题
  • 基于深度学习的股票预测
  • UNiapp 微信小程序渐变不生效
  • FinClip 率先入驻 AWS Marketplace,加速全球市场布局
  • ChatGPT对话:Windows如何将Python训练模型转换为TensorFlow.js格式
  • 封装网络请求 鸿蒙APP HarmonyOS ArkTS
  • 2024年度上半年中国汽车保值率报告
  • Go语言之内存分配
  • 北京交通大学《深度学习》专业课,实验3卷积、空洞卷积、残差神经网络实验
  • WPF中UI元素继承关系
  • qml 实现一个listview
  • 【Leetcode】十六、深度优先搜索 宽度优先搜索 :二叉树的层序遍历
  • Ruby教程
  • react + pro-components + ts完成单文件上传和批量上传
  • 暑假第一周——ZARA仿写
  • github.com/antchfx/jsonquery基本使用
  • 【python虚拟环境管理】【mac m3】使用poetry管理python项目
  • 《JavaSE》---16.<抽象类接口Object类>
  • 简单修改,让UE4/5着色器编译速度变快
  • 如何查看极狐GitLab Helm Chart?
  • 代码随想录算法训练营第十六天| 530.二叉搜索树的最小绝对差、501.二叉搜索树中的众数、236. 二叉树的最近公共祖先
  • NODEJS复习(ctfshow334-344)
  • 【Go系列】RPC和grpc
  • 【VUE】v-if和v-for的优先级
  • 【单目3D检测】smoke(1):模型方案详解
  • 数据库系统概论:数据库系统的锁机制
  • Django+vue自动化测试平台(28)-- ADB获取设备信息
  • RESTful API设计指南:构建高效、可扩展和易用的API
  • npm下载的依赖包版本号怎么看
  • css前端面试题