当前位置: 首页 > news >正文

Open3D 最小二乘法拟合点云平面

目录

一、概述

1.1最小二乘法原理

1.2实现步骤

1.3应用场景

二、代码实现

2.1关键函数

2.2完整代码

三、实现效果

3.1原始点云

3.2matplotlib可视化

3.3平面拟合方程


前期试读,后续会将博客加入该专栏,欢迎订阅

Open3D点云算法与点云深度学习案例汇总(长期更新)-CSDN博客

一、概述

1.1最小二乘法原理

        最小二乘法(Least Squares Method)是一种用于数据拟合的数学优化方法,通过最小化误差平方和来找到最佳拟合参数。在拟合平面时,我们使用最小二乘法来确定平面方程的参数,使得点云数据中的点到该平面的垂直距离的平方和最小。

1.2实现步骤

1.3应用场景

  1. 计算机视觉和图像处理:在物体表面拟合、3D重建和立体视觉中,帮助理解物体的几何形状和结构。
  2. 地理信息系统(GIS)和遥感:在地形建模和分析中,用于生成数字高程模型(DEM)和分析地貌特征。
  3. 机器人学和导航:在路径规划和SLAM中,帮助机器人感知环境并进行定位和导航。
  4. 工程和结构分析:在土木工程和建筑中,用于测量建筑物和结构物的平整度和倾斜度。
  5. 医学图像处理:在医学成像中,用于分析器官和组织的表面特征,辅助诊断和治疗

二、代码实现

2.1关键函数

        在 fit_plane_least_squares 函数中,我们将点云数据的 x 和 y 坐标以及一个常数 1 作为矩阵 A,将 z 坐标作为向量 b。求解线性系统后,我们获得了平面的参数 a, b 和 d。平面方程为 ax + by + cz + d = 0,因此 c = -1

def fit_plane_least_squares(points):"""使用最小二乘法直接求解拟合点云平面。参数:points (numpy.ndarray): 点云数据,形状为 (N, 3)。返回:plane (tuple): 平面参数 (a, b, c, d),其中 ax + by + cz + d = 0。"""# 构建矩阵 A 和向量 bA = np.c_[points[:, :2], np.ones(points.shape[0])]b = points[:, 2]# 求解线性系统 A^T A [a, b, d]^T = A^T bx, residuals, rank, s = np.linalg.lstsq(A, b, rcond=None)# 返回平面参数 (a, b, c, d)a, b, d = xc = -1.0  # 平面法向量的z分量return a, b, c, d

2.2完整代码

import open3d as o3d
import numpy as np
import matplotlib.pyplot as pltdef fit_plane_least_squares(points):"""使用最小二乘法直接求解拟合点云平面。参数:points (numpy.ndarray): 点云数据,形状为 (N, 3)。返回:plane (tuple): 平面参数 (a, b, c, d),其中 ax + by + cz + d = 0。"""# 构建矩阵 A 和向量 bA = np.c_[points[:, :2], np.ones(points.shape[0])]b = points[:, 2]# 求解线性系统 A^T A [a, b, d]^T = A^T bx, residuals, rank, s = np.linalg.lstsq(A, b, rcond=None)# 返回平面参数 (a, b, c, d)a, b, d = xc = -1.0  # 平面法向量的z分量return a, b, c, ddef plot_fitted_plane(points, plane_params):"""绘制点云和拟合平面的网格。参数:points (numpy.ndarray): 点云数据,形状为 (N, 3)。plane_params (tuple): 平面参数 (a, b, c, d),其中 ax + by + cz + d = 0。"""A, B, C, D = plane_params# 检查 C 值,避免除零错误if np.isclose(C, 0):C = 1e-10fig1 = plt.figure()ax1 = fig1.add_subplot(111, projection='3d')ax1.set_xlabel("x")ax1.set_ylabel("y")ax1.set_zlabel("z")# 获取xyz坐标及最值用于plot绘图min_pt = np.amin(points, axis=0)  # 获取坐标最小值max_pt = np.amax(points, axis=0)  # 获取坐标最大值ax1.scatter(points[:, 0], points[:, 1], points[:, 2], c='r', marker='^')# 创建拟合的平面网格x_p = np.linspace(min_pt[0], max_pt[0], 100)y_p = np.linspace(min_pt[1], max_pt[1], 100)XFit, YFit = np.meshgrid(x_p, y_p)ZFit = -(D + A * XFit + B * YFit) / C# 绘制拟合平面网格ax1.plot_wireframe(XFit, YFit, ZFit, rstride=10, cstride=10)# 显示图像plt.show()# -----------------------------读取点云--------------------------------
pcd = o3d.io.read_point_cloud("tilted_plane_noise.pcd")# 检查并移除 NaN 和无穷大值
pcd = pcd.remove_non_finite_points()# ----------------基于最小二乘法直接求解的拟合平面-----------------------
points = np.asarray(pcd.points)  # 获取点云数据
plane_params = fit_plane_least_squares(points)
A, B, C, D = plane_params
print('平面拟合结果为:%.6f * x + %.6f * y + %.6f * z + %.6f = 0' % (A, B, C, D))# 调用绘制网格平面的函数
plot_fitted_plane(points, plane_params)

三、实现效果

3.1原始点云

3.2matplotlib可视化

3.3平面拟合方程

平面拟合结果为:-0.004528 * x + 0.363171 * y + -1.000000 * z + 0.002728 = 0

http://www.lryc.cn/news/401311.html

相关文章:

  • 【Django+Vue3 线上教育平台项目实战】登录功能模块之短信登录与钉钉三方登录
  • 关于HBase、Phoenix、Flume、Maxwell 和 Flink
  • centos7停止维护,可替代的操作系统
  • andon系统在电力设备工管理中起到那些作用与价值
  • 消息队列-RabbitMQ
  • Elasticsearch(ES)集群监控
  • 图像处理:使用 OpenCV-Python 卡通化你的图像(2)
  • 淘宝扭蛋机小程序:旋转惊喜,开启购物新篇章!
  • JAVA零基础小白自学日志——第十七天
  • electron中app.whenReady()和app.on(‘ready‘)的区别
  • 技术速递|Let’s Learn .NET Aspire – 开始您的云原生之旅!
  • JSONNode树形解析或流式解析
  • 自制迷宫游戏 c++
  • 基于复旦微JFMQL100TAI的全国产化FPGA+AI人工智能异构计算平台,兼容XC7Z045-2FFG900I
  • 【数学建模】技术革新——Lingo的使用超详解
  • LLM-阿里 DashVector + langchain self-querying retriever 优化 RAG 实践【Query 优化】
  • 【python】PyQt5的窗口界面的各种交互逻辑实现,轻松掌控图形化界面程序
  • DockerCompose介绍,安装,使用
  • N叉树的前序遍历
  • Linux C++ 054-设计模式之外观模式
  • Linux - 冯-诺依曼体系结构、初始操作系统
  • 成功适配!极验设备指纹HarmonyOS 鸿蒙版官方下载
  • 【C++】字符串学习 知识点+代码记录
  • 尝试理解docker网络通信逻辑
  • 数据仓库哈哈
  • K最近邻(K-Nearest Neighbors, KNN)
  • 深度学习损失计算
  • 论文翻译:通过云计算对联网多智能体系统进行预测控制
  • Java核心(五)多线程
  • IDEA快速生成项目树形结构图