当前位置: 首页 > news >正文

GA-Kmeans-Transformer-GRU时序聚类+状态识别组合模型,创新发文无忧!

GA-Kmeans-Transformer-GRU时序聚类+状态识别组合模型,创新发文无忧!

目录

    • GA-Kmeans-Transformer-GRU时序聚类+状态识别组合模型,创新发文无忧!
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.GA-Kmeans-Transformer-GRU时序聚类+状态识别组合模型,创新发文无忧!运行环境Matlab2023b及以上;
2.excel数据,方便替换,先运行main1_GA_Kmeans对时序数据进行聚类、再运行main2_Transformer_GRU对聚类后的数据进行识别,其余为函数文件无需运行,可在下载区获取数据和程序内容,适用于交通、气象、负荷等领域。
3.图很多,包括聚类效果图、分类识别效果图,混淆矩阵图。命令窗口输出分类准确率、灵敏度、特异性、曲线下面积、Kappa系数、F值。
4.附赠案例数据可直接运行main一键出图,注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。

在这里插入图片描述

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信博主回复GA-Kmeans-Transformer-GRU时序聚类+状态识别组合模型
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数end%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);t_train = categorical(T_train)';
t_test  = categorical(T_test )';%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
P_train =  double(reshape(P_train, num_dim, 1, 1, M));
P_test  =  double(reshape(P_test , num_dim, 1, 1, N));%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1} = P_test( :, :, 1, i);
end%网络搭建
numChannels = num_dim;
maxPosition = 256;
numHeads = 4;
numKeyChannels = numHeads*32;

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

http://www.lryc.cn/news/401066.html

相关文章:

  • Python面试全攻略:基础知识、特性、算法与实战解析
  • Linux网络编程-socket套接字使用详解
  • Leetcode 236. 二叉树的最近公共祖先
  • GPT-4从0到1搭建一个Agent简介
  • docker镜像源配置
  • 解读InnoDB数据库索引页与数据行的紧密关联
  • 以数据编织,重构数据管理新范式
  • 在linux x86服务器安装jdk
  • 2024智慧竞技游戏俱乐部线下面临倒闭?
  • jmeter分布式(四)
  • 如何解决手机游戏因IP代理被封禁无法正常游戏的问题?
  • windows10 安装Anaconda
  • [图解]SysML和EA建模住宅安全系统-14-黑盒系统规约
  • frp内网穿透xtcp安全点对点p2p部署记录打洞失败解决方法
  • C++基础篇(2)
  • c++ primer plus 第16章string 类和标准模板库,16.1.3 使用字符串
  • 使用mybatis的statementHander拦截器监控表和字段并发送钉钉消息
  • 信贷系统——基础信贷概念
  • 分页查询及其拓展应用案例
  • 【UE5.1】NPC人工智能——02 NPC移动到指定位置
  • 有关电力电子技术的一些相关仿真和分析:⑤交-直-交全桥逆变+全波整流结构电路(MATLAB/Siumlink仿真)
  • 记录一次Android推流、录像踩坑过程
  • VsCode 与远程服务器 ssh免密登录
  • 7/13 - 7/15
  • 烟雾监测与太阳能源:实验装置在其中的作用
  • QT下,如何获取控制台输入
  • mybatis动态传入参数 pgsql 日期 Interval ,day,minute
  • 常见CSS属性
  • WSL-Ubuntu20.04训练环境配置
  • 运维检查:mysql表自增id是否快要用完