当前位置: 首页 > news >正文

每日Attention学习11——Lightweight Dilated Bottleneck

模块出处

[TITS 23] [link] [code] Lightweight Real-Time Semantic Segmentation Network With Efficient Transformer and CNN


模块名称

Lightweight Dilated Bottleneck (LDB)


模块作用

改进的编码器块


模块结构

在这里插入图片描述


模块代码
import torch
import torch.nn as nn
import torch.nn.functional as Fclass Conv(nn.Module):def __init__(self, nIn, nOut, kSize, stride, padding, dilation=(1, 1), groups=1, bn_acti=False, bias=False):super().__init__()self.bn_acti = bn_actiself.conv = nn.Conv2d(nIn, nOut, kernel_size=kSize,stride=stride, padding=padding,dilation=dilation, groups=groups, bias=bias)if self.bn_acti:self.bn_prelu = BNPReLU(nOut)def forward(self, input):output = self.conv(input)if self.bn_acti:output = self.bn_prelu(output)return outputclass BNPReLU(nn.Module):def __init__(self, nIn):super().__init__()self.bn = nn.BatchNorm2d(nIn, eps=1e-3)self.acti = nn.PReLU(nIn)def forward(self, input):output = self.bn(input)output = self.acti(output)return outputclass ShuffleBlock(nn.Module):def __init__(self, groups):super(ShuffleBlock, self).__init__()self.groups = groupsdef forward(self, x):'''Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]'''N, C, H, W = x.size()g = self.groups#return x.view(N, g, int(C / g), H, W).permute(0, 2, 1, 3, 4).contiguous().view(N, C, H, W)class eca_layer(nn.Module):"""Constructs a ECA module.Args:channel: Number of channels of the input feature mapk_size: Adaptive selection of kernel size"""def __init__(self, channel, k_size=3):super(eca_layer, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):b, c, h, w = x.size()# feature descriptor on the global spatial informationy = self.avg_pool(x)# Two different branches of ECA moduley = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)# Multi-scale information fusiony = self.sigmoid(y)return x * y.expand_as(x)class LDB(nn.Module):def __init__(self, nIn, d=1, kSize=3, dkSize=3):super().__init__()self.bn_relu_1 = BNPReLU(nIn)self.conv1x1_in = Conv(nIn, nIn // 2, 1, 1, padding=0, bn_acti=False)self.conv3x1 = Conv(nIn // 2, nIn // 2, (kSize, 1), 1, padding=(1, 0), bn_acti=True)self.conv1x3 = Conv(nIn // 2, nIn // 2, (1, kSize), 1, padding=(0, 1), bn_acti=True)self.dconv3x1 = Conv(nIn // 2, nIn // 2, (dkSize, 1), 1, padding=(1, 0), groups=nIn // 2, bn_acti=True)self.dconv1x3 = Conv(nIn // 2, nIn // 2, (1, dkSize), 1, padding=(0, 1), groups=nIn // 2, bn_acti=True)self.ca11 = eca_layer(nIn // 2)self.ddconv3x1 = Conv(nIn // 2, nIn // 2, (dkSize, 1), 1, padding=(1 * d, 0), dilation=(d, 1), groups=nIn // 2, bn_acti=True)self.ddconv1x3 = Conv(nIn // 2, nIn // 2, (1, dkSize), 1, padding=(0, 1 * d), dilation=(1, d), groups=nIn // 2, bn_acti=True)self.ca22 = eca_layer(nIn // 2)self.bn_relu_2 = BNPReLU(nIn // 2)self.conv1x1 = Conv(nIn // 2, nIn, 1, 1, padding=0, bn_acti=False)self.shuffle = ShuffleBlock(nIn // 2)def forward(self, input):output = self.bn_relu_1(input)output = self.conv1x1_in(output)output = self.conv3x1(output)output = self.conv1x3(output)br1 = self.dconv3x1(output)br1 = self.dconv1x3(br1)br1 = self.ca11(br1)br2 = self.ddconv3x1(output)br2 = self.ddconv1x3(br2)br2 = self.ca22(br2)output = br1 + br2 + outputoutput = self.bn_relu_2(output)output = self.conv1x1(output)output = self.shuffle(output + input)return outputif __name__ == '__main__':x = torch.randn([3, 256, 32, 32])ldb = LDB(nIn=256)out = ldb(x)print(out.shape)  # 3, 256, 32, 32

原文表述

LDB的结构整体上借鉴了ResNet的思想,将模块设计为残差模块,以在网络层数尽可能少的情况下收集更多的特征信息。具体来说,在bottleneck处,通过1×1卷积将输入特征的通道数减半,减少通道数之后,参数量和计算量大大减少,虽然这样会损失一部分准确率,但此时多堆叠两个模块比弥补损失更为有利。同时,由于使用了1×1卷积,必须加深网络深度才能获得更大的感受野,因此在1×1卷积之后,增加了3×1和1×3的分解卷积,以拓展感受野,从而捕捉更大范围的上下文信息。而且分解卷积也是基于考虑参数数量和计算量。同样,在接下来的双分支结构中,两个分支也都使用了分解卷积,其中一个负责局部、短距离的特征信息,另一个则使用了空洞卷积,负责在不同空洞率下从更大的感受野中提取特征信息。紧接着这两个分支的是通道注意力机制,其灵感来自ECANet,旨在在通道维度上构建注意力矩阵,以增强特征表达,抑制噪声干扰,因为对于CNN来说,大部分特征信息都包含在通道中。然后,将两个低维分支和中间特征融合,输入到下面的1×1逐点卷积中,以将特征图的通道数恢复为与输入特征图的通道数相同。最后,采用channel shuffle的策略,避免depth-wise convolution带来的信息独立、通道间无相关性的弊端,促进不同通道间语义信息的交换。

http://www.lryc.cn/news/400060.html

相关文章:

  • EM32DX-E4 IO 扩展模块
  • 【数据结构与算法】选择排序篇----详解直接插入排序和哈希排序【图文讲解】
  • SpringBoot实战:多表联查
  • 解决mysql,Navicat for MySQL,IntelliJ IDEA之间中文乱码
  • 虚拟环境操作
  • 企业网三层架构
  • node.js的安装及学习(node/nvm/npm的区别)
  • 性能优化篇:用WebSocket替代传统的http轮循
  • virtualbox的ubuntu默认ipv4地址为10.0.2.15的修改以及xshell和xftp的连接
  • Codeforces Round 957 (Div. 3)(A~D题)
  • fedora 40 安装拼音输入法
  • Chromium CI/CD 之Jenkins实用指南2024-如何创建新节点(三)
  • Git代码管理工具 — 3 Git基本操作指令详解
  • Linux——多线程(五)
  • 张量分解(4)——SVD奇异值分解
  • 第三方配件也能适配苹果了,iOS 18与iPadOS 18将支持快速配对
  • Docker 部署 Nginx 并在容器内配置申请免费 SSL 证书
  • 模型评估与选择
  • 有必要把共享服务器升级到VPS吗?
  • LLM代理应用实战:构建Plotly数据可视化代理
  • 大模型系列3--pytorch dataloader的原理
  • SQLServer 如何设置端口
  • 调整网络安全策略以适应不断升级的威胁形势
  • (leetcode学习)9. 回文数
  • QT VTK 简单测试工程
  • ES6 Generator函数的异步应用 (八)
  • Navicat:打造高效数据库管理之道
  • Python和C++全球导航卫星系统和机器人姿态触觉感知二分图算法
  • Unity 优化合集
  • 第九届MathorCup高校数学建模挑战赛-A题:基于数据驱动的城市轨道交通网络优化研究