当前位置: 首页 > news >正文

浅析Kafka Streams消息流式处理流程及原理

以下结合案例:统计消息中单词出现次数,来测试并说明kafka消息流式处理的执行流程

Maven依赖

    <dependencies><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-streams</artifactId><exclusions><exclusion><artifactId>connect-json</artifactId><groupId>org.apache.kafka</groupId></exclusion><exclusion><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId></exclusion></exclusions></dependency><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId></dependency></dependencies>

准备工作

首先编写创建三个类,分别作为消息生产者、消息消费者、流式处理者
KafkaStreamProducer:消息生产者

public class KafkaStreamProducer {public static void main(String[] args) throws ExecutionException, InterruptedException {Properties properties = new Properties();//kafka的连接地址properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.246.128:9092");//发送失败,失败的重试次数properties.put(ProducerConfig.RETRIES_CONFIG, 5);//消息key的序列化器properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");//消息value的序列化器properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");KafkaProducer<String, String> producer = new KafkaProducer<>(properties);for (int i = 0; i < 5; i++) {ProducerRecord<String, String> producerRecord = new ProducerRecord<>("kafka-stream-topic-input", "hello kafka");producer.send(producerRecord);}producer.close();}
}

该消息生产者向主题kafka-stream-topic-input发送五次hello kafka
KafkaStreamConsumer:消息消费者

public class KafkaStreamConsumer {public static void main(String[] args) {Properties properties = new Properties();//kafka的连接地址properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.246.128:9092");//消费者组properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group1");//消息的反序列化器properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");//手动提交偏移量properties.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);KafkaConsumer<String, String> consumer = new KafkaConsumer<>(properties);//订阅主题consumer.subscribe(Collections.singletonList("kafka-stream-topic-output"));try {while (true) {ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println("consumerRecord.key() = " + consumerRecord.key());System.out.println("consumerRecord.value() = " + consumerRecord.value());}// 异步提交偏移量consumer.commitAsync();}} catch (Exception e) {e.printStackTrace();} finally {// 同步提交偏移量consumer.commitSync();}}
}

KafkaStreamQuickStart:流式处理类

public class KafkaStreamQuickStart {public static void main(String[] args) {Properties properties = new Properties();properties.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.246.128:9092");properties.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());properties.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());properties.put(StreamsConfig.APPLICATION_ID_CONFIG, "streams-quickstart");StreamsBuilder streamsBuilder = new StreamsBuilder();//流式计算streamProcessor(streamsBuilder);KafkaStreams kafkaStreams = new KafkaStreams(streamsBuilder.build(), properties);kafkaStreams.start();}/*** 消息格式:hello world hello world* 配置并处理流数据。* 使用StreamsBuilder创建并配置KStream,对输入的主题中的数据进行处理,然后将处理结果发送到输出主题。* 具体处理包括:分割每个消息的值,按值分组,对每个分组在10秒的时间窗口内进行计数,然后将结果转换为KeyValue对并发送到输出主题。** @param streamsBuilder 用于构建KStream对象的StreamsBuilder。*/private static void streamProcessor(StreamsBuilder streamsBuilder) {// 从"kafka-stream-topic-input"主题中读取数据流KStream<String, String> stream = streamsBuilder.stream("kafka-stream-topic-input");System.out.println("stream = " + stream);// 将每个值按空格分割成数组,并将数组转换为列表,以扩展单个消息的值stream.flatMapValues((ValueMapper<String, Iterable<String>>) value -> {String[] valAry = value.split(" ");return Arrays.asList(valAry);})// 按消息的值进行分组,为后续的窗口化计数操作做准备.groupBy((key, value) -> value)// 定义10秒的时间窗口,在每个窗口内对每个分组进行计数.windowedBy(TimeWindows.of(Duration.ofSeconds(10))).count()// 将计数结果转换为流,以便进行进一步的处理和转换.toStream()// 显示键值对的内容,并将键和值转换为字符串格式.map((key, value) -> {System.out.println("key = " + key);System.out.println("value = " + value);return new KeyValue<>(key.key().toString(), value.toString());})// 将处理后的流数据发送到"kafka-stream-topic-output"主题.to("kafka-stream-topic-output");}}

该处理类首先从主题kafka-stream-topic-input中获取消息数据,经处理后发送到主题kafka-stream-topic-output中,再由消息消费者KafkaStreamConsumer进行消费

执行结果

在这里插入图片描述
在这里插入图片描述

流式处理流程及原理说明

初始阶段

当从输入主题kafka-stream-topic-input读取数据流时,每个消息都是一个键值对。假设输入消息的键是null或一个特定的字符串,这取决于消息是如何被发送到输入主题的。

KStream<String, String> stream = streamsBuilder.stream("kafka-stream-topic-input");

分割消息值

使用flatMapValues方法分割消息的值,但这个操作不会改变消息的键。如果输入消息的键是null,那么在这个阶段消息的键仍然是null

stream.flatMapValues((ValueMapper<String, Iterable<String>>) value -> {String[] valAry = value.split(" ");return Arrays.asList(valAry);
})

按消息的值进行分组

在 Kafka Streams 中,当使用groupBy方法对流进行分组时,实际上是在指定一个新的键,这个键将用于后续的窗口化操作和聚合操作。在这个案例中groupBy方法被用来按消息的值进行分组:

.groupBy((key, value) -> value)

这意味着在分组操作之后,流中的每个消息的键被设置为消息的值。因此,当你在后续的map方法中看到key参数时,这个key实际上是消息的原始值,因为在groupBy之后,消息的值已经变成了键。

定义时间窗口并计数

在这个阶段,消息被窗口化并计数,但是键保持不变。

.windowedBy(TimeWindows.of(Duration.ofSeconds(10)))
.count()

将计数结果转换为流

当将计数结果转换为流时,键仍然是之前分组时的键

.toStream()

处理和转换结果

map方法中,你看到的key参数实际上是分组后的键,也就是消息的原始值:

.map((key, value) -> {System.out.println("key = " + key);System.out.println("value = " + value);return new KeyValue<>(key.key().toString(), value.toString());
})

map方法中的key.key().toString()是为了获取键的字符串表示,而value.toString()是为了将计数值转换为字符串。

将处理后的数据发送到输出主题

.to("kafka-stream-topic-output");
http://www.lryc.cn/news/398838.html

相关文章:

  • QGroundControl的总体架构,模块化设计和主要组件的功能。
  • oracle 表空间文件迁移
  • JVM学习(day1)
  • js项目生产环境中移除 console
  • ROS2 + 科大讯飞 初步实现机器人语音控制
  • HTML5新增的input元素属性:placeholder、required、autofocus、min、max等
  • Cornerstone3D导致浏览器崩溃的踩坑记录
  • 【鸿蒙学习笔记】Stage模型
  • Docker进入MongoDB
  • APP与API:魔法世界的咒语与念咒者
  • 云计算安全需求分析与安全保护工程
  • 七天.NET 8操作SQLite入门到实战 - 第二天 在 Windows 上配置 SQLite环境
  • 操作系统——进程的状态与转换
  • 80. UE5 RPG 实现UI显示技能冷却进度功能
  • Vue2-集成路由Vue Router介绍与使用
  • TemuAPI接口:获取商品详情功能
  • deepstream读取mp4文件及不同类型视频输入bug解决
  • Redis服务器统计和配置信息简介
  • Linux Mac 安装Higress 平替 Spring Cloud Gateway
  • 基于重叠群稀疏的总变分信号降噪及在旋转机械故障诊断中的应用(MATLAB)
  • 【YOLOv8】 用YOLOv8实现数字式工业仪表智能读数(一)
  • 微信小程序---npm 支持
  • 02MFC画笔/画刷/画椭圆/圆/(延时)文字
  • JavaWeb(四:Ajax与Json)
  • Spring源码中的模板方法模式
  • 初学SpringMVC之 JSON 篇
  • Mojo AI编程语言(三)数据结构:高效数据处理
  • Java学习笔记整理: 关于SpringBoot 2024/7/12;
  • ASP.NET MVC Lock锁的测试
  • Hadoop3:HDFS-通过配置黑白名单对集群进行扩缩容,并实现数据均衡(实用)