当前位置: 首页 > news >正文

GCN、GIN

# 使用TuDataset 中的PROTEINS数据集。
# 里边有1113个蛋白质图,区分是否为酶,即二分类问题。# 导包
from torch_geometric.datasets import TUDataset
from torch_geometric.data import DataLoader
import torch
import torch.nn  as nn
import torch.nn.functional as F
from torch.nn import Linear,Sequential,BatchNorm1d,ReLU,Dropout
from torch_geometric.nn import GCNConv,GINConv
from torch_geometric.nn import global_mean_pool,global_add_pool# 导入数据集
dataset = TUDataset(root='',name='PROTEINS').shuffle()
# 观测图数据
print(f'Dataset:{dataset}')
print(f'Number of graphs:{len(dataset)}')
print(f'Number of nodes:{dataset[1].x.shape[0]}') # 这是针对于第一个图来说,每个图的节点数会不同
print(f'Number of features:{dataset.num_features}')
print(f'Number of classes:{dataset.num_classes}')# 一个大的数据集进行拆分,按照 8 :1 :1的比列分为训练集,验证集和测试集
train_dataset = dataset[:int(len(dataset)*0.8)]
val_dataset = dataset[int(len(dataset)*0.8):int(len(dataset)*0.9)]
test_dataset = dataset[int(len(dataset)*0.9):]
# 打印验证:
print('----------------------------------------------')
print(f'training set  ={len(train_dataset)} graphs') # 890
print(f'validation set  ={len(val_dataset)} graphs')# 111
print(f'test set  ={len(test_dataset)} graphs')# 112
# 进行批处理,每个批次最多64个图
train_loader = DataLoader(train_dataset,batch_size=64,shuffle=True)
val_loader = DataLoader(val_dataset,batch_size=64,shuffle=True)
test_loader = DataLoader(test_dataset,batch_size=64,shuffle=True)# 打印验证一下:
print('------------------------------------------------')
print('\nTrain Loader')
for i,batch in enumerate(train_loader):print(f'-Batch{i}:{batch}')
print('\nVadidation Loader')
for i,batch in enumerate(val_loader):print(f'-Batch{i}:{batch}')
print('\nTest Loader')
for i,batch in enumerate(test_loader):print(f'-Batch{i}:{batch}')# 来咯,构建GCN模型,进行分类
class GCN(nn.Module):def __init__(self,dim_h):super().__init__()self.conv1 = GCNConv(dataset.num_features,dim_h)self.conv2 = GCNConv(dim_h,dim_h)self.conv3 = GCNConv(dim_h,dim_h)self.lin = Linear(dim_h,dataset.num_classes)def forward(self,x,edge_index,batch):h = self.conv1(x,edge_index)h = h.relu()h = self.conv2(h,edge_index)h = h.relu()h = self.conv3(h,edge_index)# global_mean_pool 适合用于一些数据分布不平衡的数据hG = global_mean_pool(h,batch)# 分类h = F.dropout(hG,p=0.5,training=self.training)h = self.lin(h)return F.log_softmax(h,dim=1)# 定义GIN模型
class GIN(nn.Module):def __init__(self,dim_h):super().__init__()self.conv1 = GINConv(Sequential(Linear(dataset.num_features,dim_h),BatchNorm1d(dim_h),ReLU(),Linear(dim_h,dim_h),ReLU()))self.conv2 = GINConv(Sequential(Linear(dim_h, dim_h),BatchNorm1d(dim_h),ReLU(),Linear(dim_h, dim_h),ReLU()))self.conv3 = GINConv(Sequential(Linear(dim_h, dim_h),BatchNorm1d(dim_h),ReLU(),Linear(dim_h, dim_h),ReLU()))# 进行分类# 看论文中的公式可知,计算后是讲三个特征concat在一起self.lin1 = Linear(dim_h*3,dim_h*3)self.lin2 = Linear(dim_h*3,dataset.num_classes)def forward(self,x,edge_index,batch):h1 = self.conv1(x,edge_index)h2 = self.conv2(h1,edge_index)h3 = self.conv3(h2,edge_index)# 求和全局池化相比与其他两种池化技术(Mean global Pooling 和Max global Pooling)更具有表达能力,# 要考虑所有的结构信息,就必须考虑GNN每一层产生的嵌入信息# 将GNN的k个层中每层产生的节点嵌入求和后串联起来h1 = global_add_pool(h1,batch)h2 = global_add_pool(h2,batch)h3 = global_add_pool(h3,batch)h = torch.cat((h1,h2,h3),dim=1)# 分类h = self.lin1(h)h = h.relu()h = F.dropout(h,p=0.5,training=self.training)h = self.lin2(h)return F.log_softmax(h,dim=1)# 开始训练咯
def train(model,loader):# 设置为训练模式model.train()# 损失函数criterion = nn.CrossEntropyLoss()# 优化函数optimizer = torch.optim.Adam(model.parameters(),lr=0.01)epochs = 100for epoch in range(epochs+1):total_loss = 0acc = 0val_loss = 0val_acc = 0for data in loader:# 梯度清零optimizer.zero_grad()# 训练out = model(data.x,data.edge_index,data.batch)# 计算该批次的损失值loss = criterion(out,data.y)# 总损失total_loss += loss / len(loader)# 计算该批次的准确率acc = accuracy(out.argmax(dim=1),data.y) / len(loader)# 反向传播loss.backward()# 参数更细optimizer.step()# 验证val_loss,val_acc = test(model,val_loader)# Print metrics every 20 epochsif (epoch % 20 == 0):print(f'Epoch {epoch:>3} | Train Loss: {total_loss:.2f} | Train Acc: {acc * 100:>5.2f}% | Val Loss: {val_loss:.2f} | Val Acc: {val_acc * 100:.2f}%')return modeldef accuracy(pred_y,y):return ((pred_y == y).sum() / len(y)).item()def test(model,loader):criterion = torch.nn.CrossEntropyLoss()model.eval()loss = 0acc = 0for data in loader:out = model(data.x,data.edge_index,data.batch)loss += criterion(out,data.y) / len(loader)acc += accuracy(out.argmax(dim=1),data.y) / len(loader)return loss,acc# 开始训练
print('GCN Training')
gcn = GCN(dim_h=32)
gcn = train(gcn,train_loader)
print('GIN Training')
gin = GIN(dim_h=32)
gin = train(gin,train_loader)test_loss, test_acc = test(gcn, test_loader)
print(f'GCN test Loss: {test_loss:.2f} | GCN test Acc: {test_acc*100:.2f}%')test_loss, test_acc = test(gin, test_loader)
print(f'Gin test Loss: {test_loss:.2f} | Gin test Acc: {test_acc*100:.2f}%')

GCN 思想:
通过卷积操作来聚合每个节点以及其邻居的特征。
计算公式如下:
H l + 1 = σ ( D ~ − 1 / 2 A ~ D ~ − 1 / 2 H l W l ) H^{l+1}=\sigma(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}H^{l}W^{l}) Hl+1=σ(D~1/2A~D~1/2HlWl)
GIN 思想:
目的:增强图神经网络的区分能力,能够更好地区分不同的图,引入了更加强大的聚合函数。
计算公式如下:
h v k = M L P k ( ( 1 + ε ) ⋅ h v k − 1 + ∑ u ∈ N ( v ) h u k − 1 ) h_{v}^{k}=MLP^{k}((1+\varepsilon)\cdot h_{v}^{k-1} + \sum_{u\in\mathcal{N}_(v)}h_{u}^{k-1} ) hvk=MLPk((1+ε)hvk1+uN(v)huk1)
ε \varepsilon ε 是一个可学习的或固定的超参数,用于调节自环的贡献。

http://www.lryc.cn/news/398716.html

相关文章:

  • Web控件进阶交互
  • 基于SpringBoot的校园疫情防控系统
  • elasticsearch 查询超10000的解决方案
  • SpringCloud集成kafka集群
  • Macos 远程登录 Ubuntu22.04 桌面
  • 第十届MathorCup高校数学建模挑战赛-A题:无车承运人平台线路定价问题
  • 在分布式环境中,怎样保证 PostgreSQL 数据的一致性和完整性?
  • RabbitMq如何保证消息的可靠性和稳定性
  • druid(德鲁伊)数据线程池连接MySQL数据库
  • 观察者模式的实现
  • Eureka: Netflix开源的服务发现框架
  • go-基准测试
  • 线性代数|机器学习-P23梯度下降
  • SQL,python,knime将数据混合的文字数字拆出来,合并计算实战
  • mac ssh连接工具
  • 阿里通义音频生成大模型 FunAudioLLM 开源
  • 通用详情页的打造
  • java内部类的本质
  • vue3 学习笔记08 -- computed 和 watch
  • Python-PLAXIS自动化建模技术与典型岩土工程案例
  • license系统模型设计使用django models
  • 【通信协议-RTCM】MSM语句(1) - 多信号GNSS观测数据消息格式
  • vue3-vite-pinia模板
  • 华为HCIP Datacom H12-821 卷38
  • C语言求10进制转2进制(除2取余法)
  • PHP 调用淘宝详情 API 接口的方法与实践
  • 风景区服务热线系统:智能化时代的旅游新选择
  • Linux修改配置文件后无法使用命令或无法进入桌面
  • 安卓14中Zygote初始化流程及源码分析
  • 等保一体机 | 什么是等保一体机?一台机器就能过等保吗?