当前位置: 首页 > news >正文

实变函数精解【3】

文章目录

  • 点集
    • 求导集
  • 闭集
  • 参考文献

点集

求导集

  • 例1
    E = { 1 / n + 1 / m : n , m ∈ N } 1. lim ⁡ n → ∞ ( 1 / n + 1 / m ) = 1 / m 2. lim ⁡ n , m → ∞ ( 1 / n + 1 / m ) = 0 3. E ′ = { 0 , 1 , 1 / 2 , 1 / 3 , . . . . } E=\{1/n+1/m:n,m \in N\} \\1.\lim_{n \rightarrow \infty}(1/n+1/m)=1/m \\2.\lim_{n,m \rightarrow \infty}(1/n+1/m)=0 \\3.E'=\{0,1,1/2,1/3,....\} E={1/n+1/m:n,mN}1.nlim(1/n+1/m)=1/m2.n,mlim(1/n+1/m)=03.E={0,1,1/2,1/3,....}
  • 例2
    E = { ( m − n ) / ( m + n ) : m , n ∈ N } 1. ( m − n ) / ( m + n ) = 1 − 2 m n + 1 2. lim ⁡ n → ∞ ( 1 − 2 m n + 1 ) = − 1 3. lim ⁡ m → ∞ ( 1 − 2 m n + 1 ) = 1 4. lim ⁡ n , m → ∞ ( 1 − 2 m n + 1 ) = lim ⁡ n , m → ∞ ( 1 − 1 2 1 m n + 1 ) 1 m n + 1 < 1 = > − 1 < lim ⁡ n , m → ∞ ( 1 − 1 2 1 m n + 1 ) < 1 E ′ = [ − 1 , 1 ] E=\{(\sqrt m-\sqrt n)/(\sqrt m +\sqrt n):m,n \in N\} \\1.(\sqrt m-\sqrt n)/(\sqrt m +\sqrt n)=1-\frac {2} {\sqrt {m \over n}+1} \\2.\lim_{n \rightarrow \infty }(1-\frac {2} {\sqrt {m \over n}+1})=-1 \\3.\lim_{m \rightarrow \infty }(1-\frac {2} {\sqrt {m \over n}+1})=1 \\4.\lim_{n,m \rightarrow \infty }(1-\frac {2} {\sqrt {m \over n}+1})=\lim_{n,m \rightarrow \infty }(1- \frac 1 2 \frac {1} {\sqrt {m \over n}+1}) \\\frac {1} {\sqrt {m \over n}+1} < 1=> \\-1 <\lim_{n,m \rightarrow \infty }(1- \frac 1 2 \frac {1} {\sqrt {m \over n}+1})<1 \\E'=[-1,1] E={(m n )/(m +n ):m,nN}1.(m n )/(m +n )=1nm +122.nlim(1nm +12)=13.mlim(1nm +12)=14.n,mlim(1nm +12)=n,mlim(121nm +11)nm +11<1=>1<n,mlim(121nm +11)<1E=[1,1]
  • 例3
    E = { x n = s i n l n n : n ∈ N } E=\{x_n=sinlnn:n \in N\} E={xn=sinlnn:nN}

在这里插入图片描述

lim ⁡ n → ∞ l n n = ∞ − 1 ≤ lim ⁡ n → ∞ s i n l n n ≤ 1 E ′ = [ − 1 , 1 ] \lim_{n \rightarrow \infty}lnn=\infty \\-1\le \lim_{n \rightarrow \infty}sinlnn \le1 \\E'=[-1,1] nlimlnn=1nlimsinlnn1E=[1,1]

闭集

E ⊂ R n , E ⊃ E ′ = > E 为闭集 E \subset R^n,E \supset E'=>E为闭集 ERn,EE=>E为闭集
E ˉ = E ∪ E ′ = > E 为闭包 \bar E=E \cup E'=>E为闭包 Eˉ=EE=>E为闭包
A ⊂ B , A ˉ = B = > A 在 B 中稠密 , A 是 B 的稠密子集 A \subset B,\bar A=B=>A在B中稠密,A是B的稠密子集 AB,Aˉ=B=>AB中稠密,AB的稠密子集
下面内容由文心一言生成

在实变函数中,闭集是一个重要的概念,它与开集相对。以下是对实变函数中闭集的详细解释:

  1. 定义

    • 在实数集R(或更一般的度量空间、拓扑空间)中,闭集是指包含其所有极限点的集合。
    • 换句话说,如果一个集合的所有极限点都属于该集合本身,则它是闭集。
  2. 性质

    • 闭集在并集、交集和补集运算下具有良好的性质。
    • 任意多个闭集的交集仍然是闭集。
    • 有限个闭集的并集也是闭集。
    • 闭集的补集是开集(在实数集R中)。
  3. 例子

    • 在实数集R中,闭区间[a, b]是一个闭集,因为它包含了其所有边界点a和b,以及区间内的所有点。
    • 单点集{x}也是一个闭集,因为它只包含一个点,该点自然是它自己的极限点。
    • 空集∅也是一个闭集,因为它不包含任何点,所以也没有极限点需要包含。
  4. 与开集的关系

    • 开集和闭集是相对的。一个集合是开集当且仅当它的补集是闭集。
    • 在实数集R中,开区间(a, b)是一个开集,而它的补集是闭集,由两个闭区间和两个单点集组成:(-∞, a] ∪ [b, +∞) ∪ {a} ∪ {b}(但通常我们只说它的补集包含(-∞, a]和[b, +∞)这两部分,因为单点集在实数轴上可视为闭集)。
  5. 闭包与闭集的关系

    • 任何一个集合S的闭包都是闭集。
    • 闭包是包含S的最小闭集,即S的闭包是包含S的所有闭集中的最小者(在包含关系下)。

综上所述,闭集是实变函数中一个基本而重要的概念,它与开集、闭包等概念紧密相关,并在数学分析中发挥着重要作用。

在点集拓扑学中,对于实数集R(或更一般的度量空间、拓扑空间)中的一个点集E,E的闭包通常定义为E与E的所有极限点(或聚点)的并集,记作Ē或E∪E′。这里,E′表示E的导集,即E中所有聚点的集合。聚点的定义是:对于E中的点x,如果存在一个包含x的邻域U,使得U与E的交集(去掉x后)非空,则称x为E的聚点。

性质:闭包是包含原集合的最小闭集。即,对于任意集合E,其闭包Ē是包含E的所有闭集中最小的一个。
例子:考虑实数集R上的开区间(0,1),其闭包是闭区间[0,1],因为0和1是(0,1)的聚点。

参考文献

1.《实变函数解题指南》 周民强
2.《实变函数论》 周民强

http://www.lryc.cn/news/397983.html

相关文章:

  • JVM:SpringBoot TomcatEmbeddedWebappClassLoader
  • 蜂窝互联网接入:连接世界的无缝体验
  • Sprint Boot 2 核心功能(一)
  • GitLab CI/CD实现项目自动化部署
  • 阿里云调整全球布局关停澳洲云服务器,澳洲服务器市场如何选择稳定可靠的云服务?
  • 排序(二)——快速排序(QuickSort)
  • <数据集>穿越火线cf人物识别数据集<目标检测>
  • a+=1和a=a+1的区别
  • 设计模式使用场景实现示例及优缺点(结构型模式——桥接模式)
  • Spring——自动装配Bean
  • 云端典藏:iCloud中个人收藏品目录的智能存储方案
  • 安全开发基础篇-数据溢出
  • Scanner工具类
  • springboot3 集成GraalVM
  • HumanoidBench——模拟仿人机器人算法有未来
  • 实现前端用户密码重置功能(有源码)
  • 《双流多依赖图神经网络实现精确的癌症生存分析》| 文献速递-基于深度学习的多模态数据分析与生存分析
  • 【Hive SQL 每日一题】在线峰值人数计算
  • 谷粒商城学习笔记-18-快速开发-配置测试微服务基本CRUD功能
  • 机器学习库实战:DL4J与Weka在Java中的应用
  • MongoDB教程(一):Linux系统安装mongoDB详细教程
  • leetcode74. 搜索二维矩阵
  • Redis 布隆过滤器性能对比分析
  • Java List不同实现类的对比
  • 【C语言】 —— 预处理详解(下)
  • Jupyter Notebook简介
  • ChatGPT 5.0:一年后的猜想
  • Java套红:指定位置合并文档-NiceXWPFDocument
  • 【操作系统】进程管理——进程的同步与互斥(个人笔记)
  • Qt:13.多元素控件(QLinstWidget-用于显示项目列表的窗口部件、QTableWidget- 用于显示二维数据表)