当前位置: 首页 > news >正文

Diffusion 公式推导 2

Diffusion 公式推导 中对 DDPM 进行了推导,本文接着对 DDIM 进行推导。

目录

  • 六. 模型改进

六. 模型改进

从扩散模型的推理过程不难看出,DDPM 有一个致命缺点 —— 推理速度过慢,因为逆扩散是从 x T x_{T} xT x 0 x_{0} x0 的完整过程,无法跳过中间的迭代过程。为了加快推理过程,DDIM (Denoising Diffusion Implicit Models) 对 DDPM 进行了改进,采用的是一个非马尔科夫过程,使得生成过程可以在更少的时间步内完成。

从原理角度来看 1,DDIM 假设 q ( x t − 1 ∣ x 0 , x t ) q (x_{t-1} \mid x_0, x_t) q(xt1x0,xt) 是一个高斯分布,对其进行待定系数:
q ( x t − 1 ∣ x 0 , x t ) ∼ N ( k x 0 + m x t , σ 2 ) (21) q (x_{t-1} \mid x_0, x_t) \sim \mathcal{N}\left(kx_0+mx_t, \sigma^2\right) \tag{21} q(xt1x0,xt)N(kx0+mxt,σ2)(21)

因此有:
x t − 1 = k x 0 + m x t + σ ϵ 其中  ϵ ∼ N ( 0 , I ) (22) x_{t-1} = kx_0+mx_t + \sigma \epsilon \quad \text{ 其中 } \epsilon \sim \mathcal{N}(0, \bold I) \tag{22} xt1=kx0+mxt+σϵ 其中 ϵN(0,I)(22)

将(7)式代入,得到:
x t − 1 = k x 0 + m x t + σ ϵ = k x 0 + m ( α ‾ t x 0 + 1 − α ‾ t ϵ ‾ 0 ) + σ ϵ = ( k + m α ‾ t ) x 0 + m 1 − α ‾ t ϵ ‾ 0 + σ ϵ = ( k + m α ‾ t ) x 0 + ϵ ′ (23) \begin{aligned} x_{t-1} & = kx_0+mx_t + \sigma \epsilon\\ & = kx_0+m(\sqrt{\overline{\alpha}_t} x_{0} + \sqrt{1-\overline{\alpha}_t} \overline \epsilon_{0}) + \sigma \epsilon\\ & = (k+m\sqrt{\overline{\alpha}_t})x_0 + m\sqrt{1-\overline{\alpha}_t} \overline \epsilon_{0} + \sigma \epsilon\\ & = (k+m\sqrt{\overline{\alpha}_t})x_0 + \epsilon' \end{aligned} \tag{23} xt1=kx0+mxt+σϵ=kx0+m(αt x0+1αt ϵ0)+σϵ=(k+mαt )x0+m1αt ϵ0+σϵ=(k+mαt )x0+ϵ(23)

其中, m 1 − α ‾ t ϵ ‾ 0 + σ ϵ m\sqrt{1-\overline{\alpha}_t} \overline \epsilon_{0} + \sigma \epsilon m1αt ϵ0+σϵ 可以合并成 ϵ ′ \epsilon' ϵ 是因为高斯分布的可加性,因此有 ϵ ′ ∼ N ( 0 , m 2 ( 1 − α ‾ t ) + σ 2 ) \epsilon' \sim \mathcal{N}(0, m^2(1-\overline{\alpha}_t) + \sigma^2) ϵN(0,m2(1αt)+σ2)

将(7)式变换成 x t − 1 x_{t-1} xt1 的形式,然后和(23)式联立:

x t − 1 = α ‾ t − 1 x 0 + 1 − α ‾ t − 1 ϵ ‾ 0 x t − 1 = ( k + m α ‾ t ) x 0 + ϵ ′ \begin{aligned} x_{t-1} &= \sqrt{\overline{\alpha}_{t-1}} x_{0} + \sqrt{1-\overline{\alpha}_{t-1}} \overline \epsilon_{0}\\ x_{t-1} &= (k+m\sqrt{\overline{\alpha}_t})x_0 + \epsilon' \end{aligned} xt1xt1=αt1 x0+1αt1 ϵ0=(k+mαt )x0+ϵ

对应项系数相等得到:
α ‾ t − 1 = k + m α ‾ t 1 − α ‾ t − 1 = m 2 ( 1 − α ‾ t ) + σ 2 (24) \begin{aligned} \sqrt{\overline{\alpha}_{t-1}} &= k+m\sqrt{\overline{\alpha}_t}\\ 1-\overline{\alpha}_{t-1} &= m^2(1-\overline{\alpha}_t) + \sigma^2 \end{aligned} \tag{24} αt1 1αt1=k+mαt =m2(1αt)+σ2(24)

因此有:
m = 1 − α ‾ t − 1 − σ 2 1 − α ‾ t k = α ‾ t − 1 − 1 − α ‾ t − 1 − σ 2 1 − α ‾ t α ‾ t (25) \begin{aligned} m &= \sqrt{\frac{1-\overline{\alpha}_{t-1} - \sigma^2}{1-\overline{\alpha}_t}}\\ k &= \sqrt{\overline{\alpha}_{t-1}} - \sqrt{\frac{1-\overline{\alpha}_{t-1} - \sigma^2}{1-\overline{\alpha}_t}} \sqrt{\overline{\alpha}_t}\\ \end{aligned} \tag{25} mk=1αt1αt1σ2 =αt1 1αt1αt1σ2 αt (25)

和 DDPM 逆扩散过程一样,代入(7)式将 x 0 x_0 x0 替换成 x t x_t xt 表示,再将(25)式代入(22)式,得到:
x t − 1 = k x 0 + m x t + σ ϵ = ( α ‾ t − 1 − 1 − α ‾ t − 1 − σ 2 1 − α ‾ t α ‾ t ) ( x t − 1 − α ‾ t ϵ ‾ 0 α ‾ t ) + 1 − α ‾ t − 1 − σ 2 1 − α ‾ t x t + σ ϵ = α ‾ t − 1 α ‾ t x t + ( 1 − α ‾ t − 1 − σ 2 − α ‾ t − 1 ( 1 − α ‾ t ) α ‾ t ) ϵ ‾ 0 + σ ϵ = 1 α t x t + ( 1 − α ‾ t − 1 − σ 2 − 1 − α ‾ t α t ) ϵ ‾ 0 + σ ϵ (26) \begin{aligned} x_{t-1} &= kx_0+mx_t + \sigma \epsilon\\ &= (\sqrt{\overline{\alpha}_{t-1}} - \sqrt{\frac{1-\overline{\alpha}_{t-1} - \sigma^2}{1-\overline{\alpha}_t}} \sqrt{\overline{\alpha}_t})(\frac{x_t - \sqrt{1-\overline{\alpha}_t} \overline \epsilon_{0}}{\sqrt{\overline{\alpha}_t}}) + \sqrt{\frac{1-\overline{\alpha}_{t-1} - \sigma^2}{1-\overline{\alpha}_t}}x_t + \sigma \epsilon\\ &= \sqrt{\frac{\overline{\alpha}_{t-1}}{\overline{\alpha}_t}}x_t + (\sqrt{1-\overline{\alpha}_{t-1} - \sigma^2}-\sqrt{\frac{\overline{\alpha}_{t-1}(1-\overline{\alpha}_t)}{\overline{\alpha}_t}}) \overline \epsilon_{0} + \sigma \epsilon\\ &= \frac{1}{\sqrt{\alpha_t}}x_t + \left(\sqrt{1-\overline{\alpha}_{t-1} - \sigma^2}-\sqrt{\frac{1-\overline{\alpha}_t}{\alpha_t}}\right) \overline \epsilon_{0} + \sigma \epsilon\\ \end{aligned} \tag{26} xt1=kx0+mxt+σϵ=(αt1 1αt1αt1σ2 αt )(αt xt1αt ϵ0)+1αt1αt1σ2 xt+σϵ=αtαt1 xt+(1αt1σ2 αtαt1(1αt) )ϵ0+σϵ=αt 1xt+(1αt1σ2 αt1αt )ϵ0+σϵ(26)

ϵ ‾ 0 \overline \epsilon_{0} ϵ0 通过 U-Net 进行预测,其他都是已知参数。网上的教程都是推导到(26)式处就说不是马尔科夫假设,所以不需要严格遵守 x t → x t − 1 x_{t} \rightarrow x_{t-1} xtxt1 2 3。也有从相隔多个迭代步数采样向前推的,参见 一个视频看懂DDIM凭什么加速采样|扩散模型相关。

\  


\  

总之,DDIM 推理时可以隔多步进行采样,通过一个确定性映射直接将噪声转换为数据,避免了 DDPM 中的随机性,在减少生成时间步的同时,保持生成图像的高质量。推理过程中的确定性映射表示如下:
x τ i − 1 = α ˉ τ i − 1 ( x τ i − 1 − α ˉ τ i ϵ θ ( x τ i , τ i ) α ˉ τ i ) + 1 − α ˉ τ i − 1 − σ τ i 2 ϵ θ ( x τ i , τ i ) \mathbf{x}_{\tau_{i-1}} = \sqrt{\bar{\alpha}_{\tau_{i-1}}} \left( \frac{\mathbf{x}_{\tau_i} - \sqrt{1 - \bar{\alpha}_{\tau_i}} \epsilon_\theta(\mathbf{x}_{\tau_i}, \tau_i)}{\sqrt{\bar{\alpha}_{\tau_i}}} \right) + \sqrt{1 - \bar{\alpha}_{\tau_{i-1}} - \sigma_{\tau_i}^2} \epsilon_\theta(\mathbf{x}_{\tau_i}, \tau_i) xτi1=αˉτi1 (αˉτi xτi1αˉτi ϵθ(xτi,τi))+1αˉτi1στi2 ϵθ(xτi,τi)

其中 τ = { τ 1 , τ 2 , . . . , τ N } \tau = \{ \tau_1, \tau_2, ..., \tau_N \} τ={τ1,τ2,...,τN} 是时间步长序列。通过这个机制,DDIM 可以在生成过程中跳过多个步骤。

https://zhuanlan.zhihu.com/p/675510886


  1. 一文带你看懂DDPM和DDIM(含原理简易推导,pytorch代码) ↩︎

  2. DDPM与DDIM简洁版总结 ↩︎

  3. DDPM和DDIM公式推导。(精简版) ↩︎

http://www.lryc.cn/news/396253.html

相关文章:

  • layui-表单(输入框)
  • 中职网络安全B模块渗透测试server2380
  • 微信小程序毕业设计-教育培训系统项目开发实战(附源码+论文)
  • 【面试题】正向代理和反向代理的区别?
  • Python面试宝典第8题:二叉树遍历
  • FastReport 指定sql 和修改 数据库连接地址的 工具类 :FastReportHelper
  • C++11中重要的新特性 Part one
  • VB 关键字
  • Linux——多线程(四)
  • InetAddress.getLocalHost().getHostAddress()阻塞导致整个微服务崩溃
  • 在 Qt6 中,QList 和 QVector 统一 成qlist了吗?
  • 第三期书生大模型实战营 第1关 Linux 基础知识
  • 架构设计(1)分布式架构
  • 机器学习笔记:初始化0的问题
  • JavaWeb—js(3)
  • PLSQL Day4
  • git合并报错:git -c core.quotepath=false -c log.showSignature=false merge r
  • 云原生存储:使用MinIO与Spring整合
  • 等保测评新趋势:应对数字化转型中的安全挑战
  • 使用esptool工具备份ESP32的固件(从芯片中备份下来固件)
  • JS进阶-解析赋值
  • Java虚拟机面试题汇总
  • C++休眠的方法
  • 选择排序(C语言版)
  • 基于CentOS Stream 9平台搭建FRP内网穿透
  • Redis管理禁用命令
  • RFID智能锁控系统在物流安全运输中的应用与效益分析
  • WPF设置全局样式
  • 【福利】代码公开!咸鱼之王自动答题脚本
  • ChatGPT-4o大语言模型优化、本地私有化部署、从0-1搭建、智能体构建技术