当前位置: 首页 > news >正文

Keras实战之图像分类识别

文章目录

    • 整体流程
      • 数据加载与预处理
      • 搭建网络模型
      • 优化网络模型
        • 学习率
        • Drop-out操作
        • 权重初始化方法对比
        • 正则化
        • 加载模型进行测试

实战:利用Keras框架搭建神经网络模型实现基本图像分类识别,使用自己的数据集进行训练测试。

问:为什么选择Keras?
答:使用Keras便捷快速。用起来简单,入门容易,上手快。没有tensorflow那么复杂的规范。

整体流程

  1. 读取数据
  2. 数据预处理
  3. 切分数据集(分为训练集和测试集)
  4. 搭建网络模型(初始化参数)
  5. 训练网络模型
  6. 评估测试模型(通过对比不同参数下损失函数不断优化模型)
  7. 保存模型到本地

(1)手动配置参数,设置数据存储路径、模型保存路径、图片保存路径

# 输入参数,手动设置数据存储路径、模型保存路径、图片保存路径等
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--dataset", required=True,help="path to input dataset of images")
ap.add_argument("-m", "--model", required=True,help="path to output trained model")
ap.add_argument("-l", "--label-bin", required=True,help="path to output label binarizer")
ap.add_argument("-p", "--plot", required=True,help="path to output accuracy/loss plot")
args = vars(ap.parse_args())

在这里插入图片描述

数据加载与预处理

# 拿到图像数据路径,方便后续读取
imagePaths = sorted(list(utils_paths.list_images(args["dataset"])))
random.seed(42)
random.shuffle(imagePaths)
# 数据洗牌前设置随机种子确保后面调参过程中训练数据集一样# 遍历读取数据
for imagePath in imagePaths:# 读取图像数据,由于使用神经网络,需要输入数据给定成一维image = cv2.imread(imagePath)# 而最初获取的图像数据是三维的,则需要将三维数据进行拉长image = cv2.resize(image, (32, 32)).flatten()data.append(image)# 读取标签,通过读取数据存储位置文件夹来判断图片标签label = imagePath.split(os.path.sep)[-2]labels.append(label)# scale图像数据,归一化
data = np.array(data, dtype="float") / 255.0
labels = np.array(labels)# 转换标签,one-hot格式
lb = LabelBinarizer()
trainY = lb.fit_transform(trainY)
testY = lb.transform(testY)

数据预处理:①通过数据除以255进行数据归一化;②对数据标签进行格式转换。

搭建网络模型

  1. 创建序列结构
model = Sequential()
  1. 添加全连接层
  • 第一层全连接层Dense设计512个神经元,当前输入特征个数(输入神经元个数)为3072,设置激活函数为"relu";
  • 第二层设计256个神经元;
  • 第三层设计类别数个神经元(即3个),并作softmax操作得到最终分类类别。
# 第一层
model.add(Dense(512, input_shape=(3072,),activation="relu"))
# 第二层
model.add(Dense(256, activation="relu",))
# 第三层
model.add(Dense(len(lb.classes_), activation="softmax",))
  1. 初始化参数
# 学习率
INIT_LR = 0.01
# 迭代次数
EPOCHS = 200
  1. 训练网络模型
# 给定损失函数和评估方法
opt = SGD(lr=INIT_LR) # 指定优化器为梯度下降的优化器
model.compile(loss="categorical_crossentropy", optimizer=opt,metrics=["accuracy"])# 训练网络模型
H = model.fit(trainX, trainY, validation_data=(testX, testY),epochs=EPOCHS, batch_size=32)
  1. 测试网络模型

使用上面训练所得网络模型对测试集进行预测,并对比预测解国和数据集真实结果打印结果报告(包括准确率、recall、f1-score),并将损失函数以折线图的效果直观展示出来

predictions = model.predict(testX, batch_size=32)
print(classification_report(testY.argmax(axis=1),predictions.argmax(axis=1), target_names=lb.classes_))
  1. 评估结果
    在这里插入图片描述
    在这里插入图片描述
    从损失函数图像中可看出,模型出现明显过拟合现象,故而该初始参数所构建的模型效果较差,需要通过调参优化模型。

优化网络模型

学习率

对比学习率为0.01和0.001的损失函数图像。

在这里插入图片描述

train_loss与val_loss之间差异仍然存在,但是可看出学习率越大,过拟合现象越明显。

Drop-out操作

Dropout操作:在搭建网络模型中,通过设置一0到1范围内的参数从而防止过拟合。
在这里插入图片描述

权重初始化方法对比

(1)RandomNormal随机高斯初始化

kernel_initializer =initializers.random_normal(mean=0.0,stddev=0.05)
model.add(Dense(512, input_shape=(3072,),activation="relu",kernel_initializer =initializers.random_normal(mean=0.0,stddev=0.05)))
model.add(Dense(256, activation="relu",kernel_initializer =initializers.random_normal(mean=0.0,stddev=0.05)))
model.add(Dense(len(lb.classes_), activation="softmax",kernel_initializer =initializers.random_normal(mean=0.0,stddev=0.05)))

在这里插入图片描述
图中可看出,添加RandomNormal初始化后,过拟合现象减弱了一丢丢。

(2)TruncatedNormal截断

kernel_initializer = initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None)

相比于正常高斯分布截断了两边,只取小于2倍stddev的值

model.add(Dense(512, input_shape=(3072,), activation="relu" ,kernel_initializer = initializers.TruncatedNormal(mean=0.0, stddev=0.05)))
model.add(Dense(256, activation="relu",kernel_initializer = initializers.TruncatedNormal(mean=0.0, stddev=0.05)))
model.add(Dense(len(lb.classes_), activation="softmax",kernel_initializer = initializers.TruncatedNormal(mean=0.0, stddev=0.05)))

在这里插入图片描述

对比stddev取不同值时的loss函数图可得,TruncatedNormal中stddev值越小,过拟合风险越低,模型效果越好。TruncatedNormal消除过拟合的效果RandomNormal好。

正则化
kernel_regularizer=regularizers.l2(0.01)

正则化后,损失函数loss = 初始loss + aR(W)。正则化惩罚W,让稳定的W减少过拟合。

model.add(Dense(512, input_shape=(3072,), activation="relu" ,kernel_initializer = initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None),kernel_regularizer=regularizers.l2(0.01)))
model.add(Dense(256, activation="relu",kernel_initializer = initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None),kernel_regularizer=regularizers.l2(0.01)))
model.add(Dense(len(lb.classes_), activation="softmax",kernel_initializer = initializers.TruncatedNormal(mean=0.0, stddev=0.05, seed=None),kernel_regularizer=regularizers.l2(0.01)))

对比正则化前后取迭代150到200的loss波动图,可发现正则化后虽然开始时loss值较大,但后期过拟合现象有明显减弱
在这里插入图片描述
再对比正则化参数l2 = 0.01和0.05的结果可得,l2越大,W的惩罚力度越大,过拟合风险越小
在这里插入图片描述

加载模型进行测试
# 导入所需工具包
from keras.models import load_model
import argparse
import pickle
import cv2# 设置输入参数
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,help="path to input image we are going to classify")
ap.add_argument("-m", "--model", required=True,help="path to trained Keras model")
ap.add_argument("-l", "--label-bin", required=True,help="path to label binarizer")
ap.add_argument("-w", "--width", type=int, default=28,help="target spatial dimension width")
ap.add_argument("-e", "--height", type=int, default=28,help="target spatial dimension height")
ap.add_argument("-f", "--flatten", type=int, default=-1,help="whether or not we should flatten the image")
args = vars(ap.parse_args())# 加载测试数据并进行相同预处理操作
image = cv2.imread(args["image"])
output = image.copy()
image = cv2.resize(image, (args["width"], args["height"]))# scale the pixel values to [0, 1]
image = image.astype("float") / 255.0# 对图像进行拉平操作
image = image.flatten()
image = image.reshape((1, image.shape[0]))# 读取模型和标签
print("[INFO] loading network and label binarizer...")
model = load_model(args["model"])
lb = pickle.loads(open(args["label_bin"], "rb").read())# 预测
preds = model.predict(image)# 得到预测结果以及其对应的标签
i = preds.argmax(axis=1)[0]
label = lb.classes_[i]# 在图像中把结果画出来
text = "{}: {:.2f}%".format(label, preds[0][i] * 100)
cv2.putText(output, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7,(0, 0, 255), 2)# 绘图
cv2.imshow("Image", output)
cv2.waitKey(0)

分类结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
通过预测结果可得:该模型在预测猫上存在较大误差,在预测熊猫上较为准确。或许改进增加迭代次数可进一步优化模型。

http://www.lryc.cn/news/395993.html

相关文章:

  • Celery,一个实时处理的 Python 分布式系统
  • 源码编译安装 LAMP
  • PostgreSQL的pg_filedump工具
  • Java语言+后端+前端Vue,ElementUI 数字化产科管理平台 产科电子病历系统源码
  • Linux 服务器环境搭建
  • RabbitMQ 更改服务端口号
  • 16:9横屏短视频素材库有哪些?横屏短视频素材网站分享
  • 在Java中,创建一个实现了Callable接口的类可以提供强大的灵活性,特别是当你需要在多线程环境中执行任务并获取返回结果时。
  • Vuforia AR篇(八)— AR塔防上篇
  • Spring AOP源码篇四之 数据库事务
  • 小波与傅里叶变换的对比(Python)
  • Linux-sqlplus安装
  • LeetCode 算法:课程表 c++
  • 前端面试题30(闭包和作用域链的关系)
  • A股本周在3000点以下继续筑底,本周依然继续探底?
  • Javadoc介绍
  • C# Application.DoEvents()的作用
  • IDEA如何创建原生maven子模块
  • LCD EMC 辐射 测试随想
  • Docker安装遇到问题:curl: (7) Failed to connect to download.docker.com port 443: 拒绝连接
  • 阿里云安装rabbitMQ
  • 中文大模型基准测评2024上半年报告
  • 新火种AI|OpenAI的CEO又有新动作?这次他成立了AI健康公司
  • 中介子方程五十
  • 如何借助社交媒体影响者的力量,让品牌影响力倍增?
  • Python面试题:Python 中的 `property` 函数有什么用?
  • 十五、小型电脑没有数字键及insert,怎么解决IDEA快速插入getset构造这些方法
  • 【鸿蒙学习笔记】属性学习迭代笔记
  • 工具推荐:滴答清单
  • 阶段三:项目开发---大数据开发运行环境搭建:任务4:安装配置Spark集群