当前位置: 首页 > news >正文

【45 Pandas+Pyecharts | 去哪儿海南旅游攻略数据分析可视化】

文章目录

  • 🏳️‍🌈 1. 导入模块
  • 🏳️‍🌈 2. Pandas数据处理
    • 2.1 读取数据
    • 2.2 查看数据信息
    • 2.3 日期处理,提取年份、月份
    • 2.4 经费处理
    • 2.5 天数处理
  • 🏳️‍🌈 3. Pyecharts数据可视化
    • 3.1 出发日期_年份分布
    • 3.2 出发日期_月份分布
    • 3.3 出行天数分布
    • 3.4 旅游途经点分布
    • 3.5 出行团体占比
    • 3.6 人均消费区间占比
    • 3.7 出行类型标签统计
    • 3.8 旅游行程景点词云
  • 🏳️‍🌈 4. 可视化项目源码+数据

大家好,我是 👉【Python当打之年(点击跳转)】

本期利用 python 分析一下「去哪网海南旅游攻略数据」 ,看看海南哪些旅游景点最受大家喜爱,哪个时间段旅游的朋友比较多,最受大家欢迎的旅行方式有哪些,以及旅行目的 等,希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

涉及到的库:

  • Pandas — 数据处理
  • Pyecharts — 数据可视化

🏳️‍🌈 1. 导入模块

import pandas as pd
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import Pie
from pyecharts.charts import Scatter
from pyecharts.charts import WordCloud
from pyecharts import options as opts
import warnings
warnings.filterwarnings('ignore')

🏳️‍🌈 2. Pandas数据处理

2.1 读取数据

df = pd.read_excel("./去哪网海南攻略数据.xlsx")

在这里插入图片描述

2.2 查看数据信息

df.info()

在这里插入图片描述

2.3 日期处理,提取年份、月份

df['出发日期_年'] = [int(i.split('-')[0]) for i in df['出发日期'].tolist()]
df['出发日期_月'] = [int(i.split('-')[1]) for i in df['出发日期'].tolist()]

在这里插入图片描述

2.4 经费处理

fee = [int(i.replace('人均','').replace('元','')) for i in df_fee['人均消费'].tolist()]
df_fee['人均消费'] = fee

在这里插入图片描述

2.5 天数处理

df['天数'] = df['天数'].str[1:-1]
df['天数'] = df['天数'].astype('int')

在这里插入图片描述

🏳️‍🌈 3. Pyecharts数据可视化

3.1 出发日期_年份分布

def get_chart1():chart = (Bar().add_xaxis(x_data).add_yaxis("", y_data).set_global_opts(title_opts=opts.TitleOpts(title="1-出发日期_年",pos_top='2%',pos_left="center",),legend_opts=opts.LegendOpts(is_show=False),xaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=False)),yaxis_opts=opts.AxisOpts(splitline_opts=opts.SplitLineOpts(is_show=False)),visualmap_opts=opts.VisualMapOpts(is_show=False,),))return chart

在这里插入图片描述

  • 2014、2015、2016年的攻略数量相较于其他年份明显较多、2017-2021年趋于平稳。

  • 近三年时间大概由于时间比较近,加之疫情原因,所以攻略数量较少。

3.2 出发日期_月份分布

def get_chart2():chart = (Line().add_xaxis(x_data).add_yaxis("", y_data).set_global_opts(title_opts=opts.TitleOpts(title="2-每月攻略数量",pos_top='2%',pos_left="center",),visualmap_opts=opts.VisualMapOpts(is_show=False),legend_opts=opts.LegendOpts(is_show=False),))return chart

在这里插入图片描述

  • 1月、12月的攻略数比较高,大概占到了总数量的20%,反而6月、7月、8月的数量相对低一些。

3.3 出行天数分布

在这里插入图片描述

  • 从出行天数上来看,大多集中在一周(5天)左右,也有少量半个月、一个月的旅游时间。

3.4 旅游途经点分布

在这里插入图片描述

  • 首当其冲当然是三亚(1853)啦!远超排在第二的海口(182),基本是10倍之多,紧随其后的是陵水(108)、万宁(60)、文昌(46)等地。

3.5 出行团体占比

def get_chart3():chart = (Pie().add("", [list(z) for z in zip(x_data, y_data)]).set_global_opts(title_opts=opts.TitleOpts(title="5-出行团体占比",pos_top='2%',pos_left="center"),legend_opts=opts.LegendOpts(is_show=False),visualmap_opts=opts.VisualMapOpts(is_show=False,),).set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")))return chart

  • 出行团体方面大多以好友(22%)、情侣(21%)和家庭(20%)团体居多。

3.6 人均消费区间占比

在这里插入图片描述

  • 人均消费3000-5000元居多,占比46%,1000-3000元占比28%。

3.7 出行类型标签统计

在这里插入图片描述

3.8 旅游行程景点词云

def get_chart4():chart = (WordCloud().add("",words,word_size_range=[10,50]).set_global_opts(title_opts=opts.TitleOpts(title='8-旅游行程景点词云',pos_top='2%',pos_left="center",),legend_opts=opts.LegendOpts(is_show=False),visualmap_opts=opts.VisualMapOpts(is_show=False),))return chart

在这里插入图片描述

  • 亚龙湾、三亚湾、蜈支洲岛、大东海、天涯海角、海棠湾等景点更受驴友的喜爱。

🏳️‍🌈 4. 可视化项目源码+数据

点击跳转:【全部可视化项目源码+数据】


以上就是本期为大家整理的全部内容了,赶快练习起来吧,原创不易,喜欢的朋友可以点赞、收藏也可以分享注明出处)让更多人知道。

http://www.lryc.cn/news/394709.html

相关文章:

  • Vue3项目给ElementPlus设置中文的两个方案
  • C#开发单实例应用程序并响应后续进程启动参数
  • STM32智能机器人导航系统教程
  • Android 15 适配之16K Page Size :为什么它会是最坑的一个适配点
  • 下载linux的吐槽
  • 【HTML入门】第四课 - 换行、分割横线和html的注释
  • 基于Hadoop平台的电信客服数据的处理与分析④项目实现:任务15:数据生产
  • Kotlin中的数据类型
  • 提高交易决策质量,Anzo Capital昂首资本只需两个交易策略
  • Ubuntu TensorRT安装
  • spring mvc学习
  • 第4集《修习止观坐禅法要》
  • IPython 日志的开关:精通 %logoff 命令的实用指南
  • Redis 分布式集群方案 Cluster
  • Redis的两种持久化方案
  • Spring中常见知识点及使用
  • Excel 宏录制与VBA编程 ——VBA编程技巧篇二 (合并内容相同连续单元格、取消合并单元格并在每个单元格中保留内容)
  • 理解和应用工业设备字典文件:一篇详细指南
  • Python酷库之旅-第三方库Pandas(010)
  • 海康威视监控web实时预览解决方案
  • ubuntu运行qq音乐闪退
  • 人脸检测(Python)
  • Offer150-23:链表中环的入口节点
  • 【linux】服务器创建RAID1
  • 记录自己Ubuntu加Nvidia驱动从入门到入土的一天
  • 基于现有Docker镜像构建新的Docker镜像
  • Java 静态变量、静态代码块、普通代码块、构造方法的执行顺序
  • 计算机网络性能指标概述:速率、带宽、时延等
  • 众所周知沃尔玛1P是怎么运营?
  • 【Linux】静态库的制作和使用详解