当前位置: 首页 > news >正文

Python OpenCV与霍夫变换:检测符合特定斜率范围的直线

        在计算机视觉和图像处理领域,检测图像中的直线是一项常见且重要的任务。OpenCV 提供了许多强大的工具来进行图像处理,其中霍夫变换(Hough Transform)就是用于检测直线的经典方法。本文将介绍如何使用 OpenCV 和霍夫变换来检测图像中符合特定斜率范围的直线,并展示一个完整的 Python 实现。

导入必要的库

首先,我们需要导入必要的 Python 库:

import cv2
import numpy as np
import matplotlib.pyplot as plt

直线筛选函数

我们定义一个函数 filter_lines_by_slope_x_range_and_y 来筛选符合特定斜率范围、x 坐标范围及至少一端 y 坐标大于 min_y 的直线:

def filter_lines_by_slope_x_range_and_y(lines, min_slope=1, max_slope=2, min_x=112, max_x=2400, min_y=310):"""筛选符合斜率范围、x坐标范围及至少一端y坐标大于min_y的直线"""valid_lines = []for line in lines:x1, y1, x2, y2 = line[0]# 检查x坐标是否在指定范围内且至少一端的y坐标大于min_yif (min_x <= x1 <= max_x or min_x <= x2 <= max_x) and (y1 > min_y or y2 > min_y):# 避免除以零错误(垂直线)if x1 == x2:continueslope = (y2 - y1) / (x2 - x1)# 考虑斜率的正负,分别对应不同方向if (min_slope <= slope <= max_slope) or (-max_slope <= slope <= -min_slope):valid_lines.append(line)return valid_lines

读取和预处理图像

我们使用 OpenCV 读取图像,并将其转换为灰度图像,然后应用高斯模糊以减少噪声,最后使用 Canny 边缘检测算法检测图像中的边缘:

# 读取图像
image = cv2.imread('rotated_image.jpg')  # 替换为你的图片路径
if image is None:print("Image not found.")exit()# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 应用高斯模糊减少噪声
gray = cv2.GaussianBlur(gray, (5, 5), 0)# Canny边缘检测
edges = cv2.Canny(gray, 100, 150, apertureSize=3)

检测和筛选直线

我们使用霍夫变换检测图像中的直线,并使用之前定义的函数筛选符合特定斜率范围的直线:

# 使用霍夫变换检测直线,注意此函数返回的是直线段而非参数空间
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=400, minLineLength=100, maxLineGap=50)# 筛选符合斜率范围的直线
valid_lines = filter_lines_by_slope_x_range_and_y(lines)

处理和保存检测到的直线信息

我们假设 valid_lines 只包含了一条满足条件的直线,并计算其斜率。如果检测到的直线为垂直线,则斜率为无穷大或用特殊标识表示:

# 假设valid_lines只包含了一条满足条件的直线
if valid_lines:# 获取唯一满足条件的直线line = valid_lines[0]x1, y1, x2, y2 = line[0]# 计算斜率,注意处理除以零的情况if x1 != x2:slope = (y2 - y1) / (x2 - x1)else:slope = 'Vertical'  # 或者用其他方式表示垂直线# 打印或保存直线信息print(f"Detected Line: ({x1}, {y1}) to ({x2}, {y2}), Slope: {slope}")# 保存至文件(示例:文本文件)with open('line_info.txt', 'w') as file:file.write(f"Start Point: ({x1}, {y1})\nEnd Point: ({x2}, {y2})\nSlope: {slope}\n")
else:print("No valid line detected.")

绘制并显示检测到的直线

我们将筛选后的直线绘制在图像上,并使用 matplotlib 显示结果:

# 绘制筛选后的直线
if valid_lines is not None:for line in valid_lines:x1, y1, x2, y2 = line[0]cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)  # 红色绘制直线# 显示结果
plt.figure(figsize=(10, 6))
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('Detected Lines with Slope between 1 to 2')
plt.show()

完整代码

以下是完整的代码:

import cv2
import numpy as np
import matplotlib.pyplot as pltdef filter_lines_by_slope_x_range_and_y(lines, min_slope=1, max_slope=2, min_x=112, max_x=2400, min_y=310):"""筛选符合斜率范围、x坐标范围及至少一端y坐标大于min_y的直线"""valid_lines = []for line in lines:x1, y1, x2, y2 = line[0]# 检查x坐标是否在指定范围内且至少一端的y坐标大于min_yif (min_x <= x1 <= max_x or min_x <= x2 <= max_x) and (y1 > min_y or y2 > min_y):# 避免除以零错误(垂直线)if x1 == x2:continueslope = (y2 - y1) / (x2 - x1)# 考虑斜率的正负,分别对应不同方向if (min_slope <= slope <= max_slope) or (-max_slope <= slope <= -min_slope):valid_lines.append(line)return valid_lines# 读取图像
image = cv2.imread('rotated_image.jpg')  # 替换为你的图片路径
if image is None:print("Image not found.")exit()# 转换为灰度图像
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 应用高斯模糊减少噪声
gray = cv2.GaussianBlur(gray, (5, 5), 0)# Canny边缘检测
edges = cv2.Canny(gray, 100, 150, apertureSize=3)# 使用霍夫变换检测直线,注意此函数返回的是直线段而非参数空间
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=400, minLineLength=100, maxLineGap=50)# 筛选符合斜率范围的直线
valid_lines = filter_lines_by_slope_x_range_and_y(lines)# 假设valid_lines只包含了一条满足条件的直线
if valid_lines:# 获取唯一满足条件的直线line = valid_lines[0]x1, y1, x2, y2 = line[0]# 计算斜率,注意处理除以零的情况if x1 != x2:slope = (y2 - y1) / (x2 - x1)else:slope = 'Vertical'  # 或者用其他方式表示垂直线# 打印或保存直线信息print(f"Detected Line: ({x1}, {y1}) to ({x2}, {y2}), Slope: {slope}")# 保存至文件(示例:文本文件)with open('line_info.txt', 'w') as file:file.write(f"Start Point: ({x1}, {y1})\nEnd Point: ({x2}, {y2})\nSlope: {slope}\n")
else:print("No valid line detected.")# 绘制筛选后的直线
if valid_lines is not None:for line in valid_lines:x1, y1, x2, y2 = line[0]cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)  # 红色绘制直线# 显示结果
plt.figure(figsize=(10, 6))
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.title('Detected Lines with Slope between 1 to 2')
plt.show()

注意:由于传统视觉处理的限制,代码中的限制条件均需根据自己的图像实际需求进行限制,限制完成后任有多余线条,可调节霍夫变换函数的相关参数,基本能满足需求!!!

结语

        本文介绍了如何使用 OpenCV 和霍夫变换检测图像中的直线,并筛选出符合特定斜率范围的直线。通过这种方法,我们可以更加精确地处理图像中的特定特征。如果你有任何问题或建议,欢迎在评论区留言讨论。

http://www.lryc.cn/news/394482.html

相关文章:

  • ubuntu22.04+pytorch2.3安装PyG图神经网络库
  • 新型开发语言的试用感受-仓颉语言发布之际
  • 基于字典学习的地震数据降噪(MATLAB R2021B)
  • 【Web】
  • kafka-3
  • MySQL性能优化 二、表结构设计优化
  • 用HttpURLConnection复现http响应码405
  • 2-27 基于matlab的一种混凝土骨料三维随机投放模型
  • ISA95-Part4-业务流程的解析与设计思路
  • 【Spring Cloud】一个例程快速了解网关Gateway的使用
  • 仿哔哩哔哩视频app小程序模板源码
  • 数据库存储引擎
  • 【单片机毕业设计选题24049】-基于STM32单片机的智能手表设计
  • 利用面向AWS的Thales Sovereign解决方案保护AI之旅
  • 学习笔记——交通安全分析13
  • PHP-实例-文件上传
  • LeetCode刷题之HOT100之完全平方数
  • 【SpringCloud应用框架】Nacos集群架构说明
  • JS进阶-作用域
  • stm32 使用GPIO模拟串口发送
  • 数据的统计探针:SKlearn中的统计分析方法
  • 实例演示Kafka-Stream消息流式处理流程及原理
  • 【博士每天一篇文献-综述】Threats, Attacks, and Defenses in Machine Unlearning A Survey
  • Python数据分析实战,运输车辆驾驶行为分析,案例教程编程实例课程详解
  • 网络安全法对等级保护中的权利和义务有何规范?
  • 苹果清理软件:让你的设备焕然一新
  • vue前端通过sessionStorage缓存字典
  • React Redux使用@reduxjs/toolkit的hooks
  • Rejetto HFS 服务器存在严重漏洞受到攻击
  • Electron开发 - 如何在主进程Main中让node-fetch使用系统代理