当前位置: 首页 > news >正文

【数据结构】链表带环问题分析及顺序表链表对比分析

【C语言】链表带环问题分析及顺序表链表对比分析

🔥个人主页大白的编程日记

🔥专栏C语言学习之路


文章目录

  • 【C语言】链表带环问题分析及顺序表链表对比分析
    • 前言
    • 一.顺序表和链表对比
      • 1.1顺序表和链表的区别
      • 1.2缓存利用率(缓存命中率)
    • 二.链表的带环问题
      • 2.1快慢指针
      • 2.2证明快慢指针相遇问题
      • 2.3快指针的步长
      • 2.4环的入口
    • 后言

前言

哈喽,各位小伙伴大家好!由于考试周很久没有更新博客了。今天给大家带来的是链表的带环问题和顺序表链表的对比分析。话不多说,进入正题。向大厂冲锋!

一.顺序表和链表对比

1.1顺序表和链表的区别

顺序表和链表是两种不同的数据结构。他们各有各的优劣。我们就来对比分析一下他们的区别。我们这里用带头双向循环链表和顺序表做对比。

  • 存储空间
    顺序表:物理上是连续的。
    链表:因为链表是由节点组成,每个节点由指针连接。 所以在逻辑上是连续的,但每个节点都是malloc动态开辟的,在物理空间上不一定连续。
  • 随机访问
    顺序表:顺序表可以通过下标来进行随机访问。
    链表:链表不支持随机访问,只能从头节点开始遍历寻找节点。
  • 任意位置插入删除
    顺序表:如果不是尾插尾删,需要挪动数据。
    链表:链表由节点组成,插入或删除只需要修改前后节点的指针指向即可。
  • 扩容
    顺序表:空间不够需要扩容。
    扩容realloc本身会有消耗且异地扩容消耗不小,2倍扩容可能存在空间浪费。
    链表:按需申请释放,需要一个申请一个,不存在扩容,不会浪费空间。
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<stdlib.h>
int main()
{int* p = (int*)malloc(4);printf("%p\n", p);int* p1 = (int*)realloc(p, 40);printf("%p", p1);
}

异地扩容:
只要空间大一点,基本都是异地扩容。
原地扩容:

  • 应用场景

顺序表和链表的优劣是互补的。
顺序表适合随机访问,不适合中间位置的插入删除。
链表适合任意位置的插入删除,但无法随机访问。
所以如果经常随机访问,但只需要尾插尾删就选择顺序表。
如果不经常随机访问,在中间位置插入删除就选择链表。
具体根据他们的优劣进行选择。

1.2缓存利用率(缓存命中率)

顺序表和链表的区别还有一个就是
顺序表的缓存命中率高。
链表的缓存命中率低。

为什么呢?什么是缓存命中率呢?

  • 内存和硬盘

这是我们计算机的内部的存储结构。
主存也就是我们的内存和硬盘的区别就是

内存的存储空间更小,通常为8G和16G,但速度快。需要带电存储
硬盘存储空间更大,速度慢,但不需要带电存储。
他们的本质是带不带电。

例如:

如果我正在写一份ppt,因为硬盘的速度慢,所以是存在内存中的,如果我这时电脑突然没电关机。重新开机后,我的ppt就不见了。因为我没有另存到硬盘中。
只用当我们另存到硬盘中才存在。

  • 寄存器和三级缓存
    那既然已经有内存,内存的速度也还行,为什么还有寄存器和三级缓存呢?
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<stdlib.h>
int main()
{int i = 0;int ret = i++;
}

以这段代码为例:

i存在内存中,也就是main函数的栈帧里。i++的执行过程是这样的:
先把i放在eax寄存器中,
对eax++,
把eax寄存器放i的内存位置

那为什么要这样做呢?
因为CPU和内存不同频,CPU跑的太快了。
如果直接访问内存数据进行++,因为内存太慢了。
他宁愿把内存中数据加载到寄存器中,CPU在寄存器执行指令,再把运行结果返回内存。

一般来说,CPU不会直接访问内存

  • 寄存器
    如果数据比较小(4或8字节)就会把数据加载到寄存器。

  • 缓存
    如果数据比较大就加载到缓存中。

缓存命中:如果要访问的数据在缓存,叫缓存命中,直接访问。
缓存不命中,如果要访问的数据不在缓存,叫缓存不命中,先把数据加载到缓存中,再访问。

  • 缓存的加载
    如果你要加载4个字节到缓存,通常会加载一长段空间到缓存中。而不只是4个字节。为什么呢?

把内存看作学校,缓存看作大巴,CPU看作度假村。
现在学校安排大巴把学生(数据)送到度假村去。

所以顺序表的缓存命中率高,
链表的缓存命中率低,而且会造成缓存污染。
如果大家想多了解缓存的话可以看这篇文章
与程序员相关的CPU缓存知识

二.链表的带环问题

链表带环是链表中的经典问题,值得我们深入学习。解决带环问题通常使用快慢指针相遇解决。但是你如何证明快慢指针一定相遇,以及快指针的步长不同会怎样呢?接下来,小编带大家一一探讨。

2.1快慢指针

  • 题目
    环形链表

  • 思路
    创建一个快指针和一个慢指针,快指针一次走两步,慢指针一次走一步。
    如果是链表带环,快慢指针最终会相遇。不带环,则快指针走到尾。
  • 代码实现
 typedef struct ListNode ListNode; 
bool hasCycle(struct ListNode *head) 
{ListNode*slow,*fast;slow=fast=head;while(fast&&fast->next){slow=slow->next;//慢指针走一步fast=fast->next->next;//快指针走两步if(fast==slow)//快慢指针相遇{return true;}}return false;//不带环
}

2.2证明快慢指针相遇问题

那如何证明题目一定会相遇呢?

当慢指针入环时,快指针与慢指针相差N个节点。
由于快指针每次走两步,慢指针走一步。
每次移动快指针都会与慢指针的距离缩小一个节点。
当他们的距离节点缩小为0时,就会相遇。
所以快慢指针一定能够相遇。

2.3快指针的步长

那快指针是不是只能走一步呢?如果快指针走3,4,5…N步还一定能相遇吗?

  • 步长为3时
    证明结果如下

我们用快慢指针步长的关系列出等式,反推证明N为奇数和C为偶数的情况不会出现,从而得出结论步长为3时一定能相遇。

  • 验证

  • 步长为3,4,5…N
    这些情况和前面的推导证明过程相似,大家有兴趣可以自己深入探究。

2.4环的入口

  • 题目
    环形链表二

  • 思路
    创建一个快指针和一个慢指针,快指针一次走两步,慢指针一次走一步。
    如果是链表带环,快慢指针最终会相遇。
    一个指针相遇点开始走,一个指针从头节点开始走,每次两个指针都走一步。
    当两个指针相遇时,相遇节点就是入环节点。
    不带环,则快指针走到尾。

  • 代码实现

 typedef struct ListNode ListNode ;
struct ListNode *detectCycle(struct ListNode *head) 
{ListNode*slow,*fast;slow=fast=head;while(fast&&fast->next){fast=fast->next->next;slow=slow->next;if(slow==fast){ListNode* pcur=slow;while(pcur!=head){pcur=pcur->next;head=head->next;}return pcur;}}return NULL;
}
  • 证明

具体证明过程如下:

  • 验证
    -在这里插入图片描述

所以根据推导我们得出只要再相遇后,一个head指针从头节点出发,一个pcur节点从相遇点出发,等他们相遇时,相遇点就是入环点。

后言

这就是链表的带环问题和顺序表链表的对比。这些都是我们数据结构学习时的重要内容。大家一定要好好掌握。今天就分享到这里,咱们下期见!拜拜~
在这里插入图片描述

http://www.lryc.cn/news/394049.html

相关文章:

  • 快速解决找不到krpt.dll,无法继续执行代码问题
  • C# List、LinkedList、Dictionary性能对比
  • 【Spring Cloud】微服务的简单搭建
  • 全球首款商用,AI为视频自动配音配乐产品上线
  • Git管理源代码、git简介,工作区、暂存区和仓库区,git远程仓库github,创建远程仓库、配置SSH,克隆项目
  • 【机器学习】机器学习与时间序列分析的融合应用与性能优化新探索
  • 执行力不足是因为选择模糊
  • 力扣 225题 用队列实现栈 记录
  • 中英双语介绍意大利(Italy):有哪些著名景点、出名品牌?
  • Python【打包exe文件两步到位】
  • 基于模型预测控制的PMSM系统速度环控制理论推导及仿真搭建
  • 【PYG】GNN和全连接层(FC)分别在不同的类中,使用反向传播联合训练,实现端到端的训练过程
  • vue3使用方式汇总
  • Turborepo简易教程
  • 初中物理知识点总结(人教版)
  • ChatGPT-4o大语言模型优化、本地私有化部署、从0-1搭建、智能体构建等高级进阶
  • 【开源项目】LocalSend 局域网文件传输工具
  • ARM/Linux嵌入式面经(十一):地平线嵌入式实习
  • 基于Redis的分布式锁
  • 如何将 Apifox 的自动化测试与 Jenkins 集成?
  • 【FFmpeg】av_write_frame函数
  • 【算法专题】双指针算法
  • Lock与ReentrantLock
  • ARM/Linux嵌入式面经(十三):紫光同芯嵌入式
  • 名企面试必问30题(二十四)—— 说说你空窗期做了什么?
  • 基础权限储存
  • Could not find a package configuration file provided by “roscpp“ 的参考解决方法
  • 运维系列.Nginx配置中的高级指令和流程控制
  • Virtualbox和ubuntu之间的关系
  • 【在Linux世界中追寻伟大的One Piece】HTTPS协议原理